|
|
A255965
|
|
Expansion of Product_{k>=1} 1/(1-x^k)^binomial(k+6,7).
|
|
8
|
|
|
1, 1, 9, 45, 201, 819, 3357, 13329, 52215, 199686, 750733, 2774793, 10112184, 36357280, 129131448, 453379226, 1574884565, 5415956550, 18450934294, 62303210591, 208624947952, 693066815809, 2285129922950, 7480504628754, 24320897894515, 78557786077315
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
In general, if g.f. = Product_{k>=1} 1/(1-x^k)^binomial(k+m-2,m-1) and m >= 1, then log(a(n)) ~ (m+1) * Zeta(m+1)^(1/(m+1)) * (n/m)^(m/(m+1)).
|
|
LINKS
|
|
|
FORMULA
|
|
|
MATHEMATICA
|
nmax=40; CoefficientList[Series[Product[1/(1-x^k)^(k*(k+1)*(k+2)*(k+3)*(k+4)*(k+5)*(k+6)/7!), {k, 1, nmax}], {x, 0, nmax}], x]
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|