login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A140227
Binomial transform of [1, 4, 6, 4, 1, 1, -1, 1, -1, 1, ...].
0
1, 5, 15, 35, 70, 127, 215, 345, 530, 785, 1127, 1575, 2150, 2875, 3775, 4877, 6210, 7805, 9695, 11915, 14502, 17495, 20935, 24865, 29330, 34377, 40055, 46415, 53510, 61395, 70127, 79765, 90370, 102005, 114735, 128627, 143750, 160175, 177975
OFFSET
1,2
FORMULA
A007318 * [1, 4, 6, 4, 1, 1, -1, 1, -1, 1, ...].
From R. J. Mathar, Jun 18 2008: (Start)
O.g.f.: x*(1+x)*(x^4 - x^3 + x^2 - x + 1)/(1-x)^5.
a(n) = 2 + 35*(n-1)^2/12 + (n-1)^4/12, n > 1. (End)
EXAMPLE
a(4) = 35 = (1, 3, 3, 1) dot (1, 4, 6, 4) = (1 + 12 + 18 + 4).
MATHEMATICA
CoefficientList[Series[x(1+x)(x^4-x^3+x^2-x+1)/(1-x)^5, {x, 0, 40}], x] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {0, 1, 5, 15, 35, 70, 127}, 50] (* Harvey P. Dale, Mar 11 2023 *)
CROSSREFS
Sequence in context: A000332 A342213 A373936 * A264925 A049016 A139761
KEYWORD
nonn
AUTHOR
Gary W. Adamson, May 12 2008
EXTENSIONS
More terms from R. J. Mathar, Jun 18 2008
STATUS
approved