login
A140229
Binomial transform of [1, 3, 3, 1, -2, 3, -4, 5, ...].
2
1, 4, 10, 20, 33, 49, 68, 90, 115, 143, 174, 208, 245, 285, 328, 374, 423, 475, 530, 588, 649, 713, 780, 850, 923, 999, 1078, 1160, 1245, 1333, 1424, 1518, 1615, 1715, 1818, 1924, 2033, 2145, 2260, 2378, 2499, 2623, 2750, 2880, 3013, 3149, 3288, 3430, 3575
OFFSET
1,2
COMMENTS
The falling diagonal starting with T(1,4) in A049777 (as a square array) gives the terms of this sequence for n >=3. - Bob Selcoe, Oct 27 2014
From Fatma E. Kurnaz, Salih E. Ariturk, and Arzu Caglar, Aug 08 2024: (Start)
Suppose a regular hexagon is divided into equilateral triangles. When we number the corners of the triangles in a spiral manner starting from the center, if the numbers increase counterclockwise, let's define them as "right triangle" and the remaining ones as "left triangle".
The number of downward-pointing left triangles, constitute this sequence for n>=2.
For n=3 a(3)=20, A hexagon with a side of 3 units consists of 54 equilateral triangles. The number of upward right triangles is 12, the number of upward left triangles is 15, the number of downward right triangles is 7. The number of downward left triangles is equal to 20. (End)
LINKS
İ. H. Karakaş and İ. Aliyev, Problem 8.36, Analiz ve Cebirde İlginç OLİMPİYAT PROBLEMLERİ VE ÇÖZÜMLERİ, TÜBİTAK Publications, 5 (2003), p. 298.
FORMULA
A007318 * [1, 3, 3, 1, -2, 3, -4, 5,...].
a(n) = (n+1)(3n-4)/2, for n>=3. - Emeric Deutsch, May 18 2008
G.f.: x(1+x+x^2+x^3-x^4)/(1-x)^3. a(n) = 3*a(n-1) -3*a(n-2) + a(n-3), n>5. a(n+1)-a(n) = A016777(n), n>3. - R. J. Mathar, Nov 25 2008
EXAMPLE
a(5) = 33 = (1, 4, 6, 4, 1) dot (1, 3, 3, 1, -2) = (1 + 12 + 18 + 4 - 2).
MAPLE
1, 4, seq((1/2)*(n+1)*(3*n-4), n=3..40); # Emeric Deutsch, May 18 2008
MATHEMATICA
s=-2; lst={1, 4}; Do[s+=n+1; If[n>3, AppendTo[lst, s]], {n, 0, 6!, 3}]; lst (* Vladimir Joseph Stephan Orlovsky, Oct 25 2008 *)
PROG
(Magma) [1, 4] cat [(n+1)*(3*n-4)/2: n in [3..50]]; // Vincenzo Librandi, Oct 27 2014
CROSSREFS
Sequence in context: A008039 A024986 A028358 * A100440 A027373 A008142
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, May 13 2008
EXTENSIONS
More terms from Emeric Deutsch, May 18 2008
More terms from Vladimir Joseph Stephan Orlovsky, Oct 25 2008
STATUS
approved