login
A049018
Expansion of 1/((1+x)^7 - x^7).
5
1, -7, 28, -84, 210, -462, 924, -1715, 2989, -4900, 7448, -9996, 9996, 0, -38759, 149205, -422576, 1041348, -2350922, 4970070, -9940140, 18874261, -33957343, 57374296, -89125120, 120875944, -120875944, 0, 459957169, -1749692735, 4904887652
OFFSET
0,2
COMMENTS
It appears that the (unsigned) sequence is identical to its 7th-order absolute difference. - John W. Layman, Oct 02 2003
LINKS
FORMULA
a(n) = (-1)^n * Sum_{k=0..floor(n/7)} (-1)^k * binomial(n+6,7*k+6). - Seiichi Manyama, Mar 21 2019
MATHEMATICA
LinearRecurrence[{-7, -21, -35, -35, -21, -7}, {1, -7, 28, -84, 210, -462}, 35] (* Ray Chandler, Sep 23 2015 *)
PROG
(PARI) Vec(1/((1+x)^7-x^7)+O(x^35)) \\ Charles R Greathouse IV, Sep 27 2012
(PARI) {a(n) = (-1)^n*sum(k=0, n\7, (-1)^k*binomial(n+6, 7*k+6))} \\ Seiichi Manyama, Mar 21 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 35); Coefficients(R!( 1/((1+x)^7 - x^7) )); // G. C. Greubel, Mar 17 2019
(Sage) (1/((1+x)^7 - x^7)).series(x, 35).coefficients(x, sparse=False) # G. C. Greubel, Mar 17 2019
CROSSREFS
Column 7 of A307047.
Cf. A049017.
Sequence in context: A166322 A008499 A375163 * A008489 A023032 A341204
KEYWORD
sign,easy
STATUS
approved