OFFSET
0,5
LINKS
Seiichi Manyama, Antidiagonals n = 0..139, flattened
FORMULA
A(n,k) = (-1)^n * Sum_{j=0..floor(n/k)} (-1)^((k mod 2) * j) * binomial(n+k-1,k*j+k-1).
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, -2, -3, -4, -5, -6, -7, -8, ...
0, 4, 6, 10, 15, 21, 28, 36, ...
0, -8, -9, -20, -35, -56, -84, -120, ...
0, 16, 9, 36, 70, 126, 210, 330, ...
0, -32, 0, -64, -125, -252, -462, -792, ...
0, 64, -27, 120, 200, 463, 924, 1716, ...
0, -128, 81, -240, -275, -804, -1715, -3432, ...
0, 256, -162, 496, 275, 1365, 2989, 6436, ...
MATHEMATICA
T[n_, k_] := (-1)^n * Sum[(-1)^(j * Mod[k, 2]) * Binomial[n + k - 1, k*j + k - 1], {j, 0, Floor[n/k]}]; Table[T[n - k, k], {n, 0, 11}, {k, n, 1, -1}] // Flatten (* Amiram Eldar, May 20 2021 *)
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Seiichi Manyama, Mar 21 2019
STATUS
approved