login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307047
Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. 1/((1+x)^k-x^k).
6
1, 1, 0, 1, -2, 0, 1, -3, 4, 0, 1, -4, 6, -8, 0, 1, -5, 10, -9, 16, 0, 1, -6, 15, -20, 9, -32, 0, 1, -7, 21, -35, 36, 0, 64, 0, 1, -8, 28, -56, 70, -64, -27, -128, 0, 1, -9, 36, -84, 126, -125, 120, 81, 256, 0, 1, -10, 45, -120, 210, -252, 200, -240, -162, -512, 0
OFFSET
0,5
LINKS
FORMULA
A(n,k) = (-1)^n * Sum_{j=0..floor(n/k)} (-1)^((k mod 2) * j) * binomial(n+k-1,k*j+k-1).
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, -2, -3, -4, -5, -6, -7, -8, ...
0, 4, 6, 10, 15, 21, 28, 36, ...
0, -8, -9, -20, -35, -56, -84, -120, ...
0, 16, 9, 36, 70, 126, 210, 330, ...
0, -32, 0, -64, -125, -252, -462, -792, ...
0, 64, -27, 120, 200, 463, 924, 1716, ...
0, -128, 81, -240, -275, -804, -1715, -3432, ...
0, 256, -162, 496, 275, 1365, 2989, 6436, ...
MATHEMATICA
T[n_, k_] := (-1)^n * Sum[(-1)^(j * Mod[k, 2]) * Binomial[n + k - 1, k*j + k - 1], {j, 0, Floor[n/k]}]; Table[T[n - k, k], {n, 0, 11}, {k, n, 1, -1}] // Flatten (* Amiram Eldar, May 20 2021 *)
CROSSREFS
Columns 1-7 give A000007, A122803, A000748, (-1)^n * A000749(n+3), A000750, A006090, A049018.
Cf. A039912 (square array A(n,k), n >= 0, k >= 2), A306913, A306914, A306915.
Sequence in context: A263097 A286011 A241954 * A049600 A318602 A004542
KEYWORD
sign,tabl
AUTHOR
Seiichi Manyama, Mar 21 2019
STATUS
approved