login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307046
Numbers k such that k^2 reversed is a prime and k^2 + (k^2 reversed) is a semiprime.
2
4, 28, 40, 62, 106, 140, 193, 196, 274, 316, 334, 400, 410, 554, 556, 620, 862, 866, 874, 884, 962, 1004, 1025, 1066, 1154, 1174, 1190, 1205, 1256, 1274, 1294, 1360, 1390, 1394, 1396, 1400, 1744, 1784, 1816, 1844, 1891, 1900, 1927, 1960, 1981, 1988, 2672, 2696, 2710, 2722, 2740, 2786, 2800, 3016, 3026
OFFSET
1,1
LINKS
EXAMPLE
4^2=16, reversed is 61. 16+61=77 which is semiprime (7*11), so 4 is in this sequence.
MAPLE
revdigs:= proc(n) local L, i;
L:= convert(n, base, 10);
add(L[-i]*10^(i-1), i=1..nops(L))
end proc:
filter:= proc(n) local a, b;
a:= n^2;
b:= revdigs(a);
isprime(b) and numtheory:-bigomega(a+b)=2
end proc:
select(filter, [$1..10000]); # Robert Israel, Mar 31 2019
MATHEMATICA
Select[Range[50000],
PrimeQ[IntegerReverse[#^2]] &&
PrimeOmega[#^2 + IntegerReverse[#^2]] == 2 &]
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Robert Price, Mar 31 2019
STATUS
approved