Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #44 Apr 02 2019 11:57:20
%S 4,28,40,62,106,140,193,196,274,316,334,400,410,554,556,620,862,866,
%T 874,884,962,1004,1025,1066,1154,1174,1190,1205,1256,1274,1294,1360,
%U 1390,1394,1396,1400,1744,1784,1816,1844,1891,1900,1927,1960,1981,1988,2672,2696,2710,2722,2740,2786,2800,3016,3026
%N Numbers k such that k^2 reversed is a prime and k^2 + (k^2 reversed) is a semiprime.
%H Robert Israel, <a href="/A307046/b307046.txt">Table of n, a(n) for n = 1..10000</a>
%e 4^2=16, reversed is 61. 16+61=77 which is semiprime (7*11), so 4 is in this sequence.
%p revdigs:= proc(n) local L,i;
%p L:= convert(n,base,10);
%p add(L[-i]*10^(i-1),i=1..nops(L))
%p end proc:
%p filter:= proc(n) local a,b;
%p a:= n^2;
%p b:= revdigs(a);
%p isprime(b) and numtheory:-bigomega(a+b)=2
%p end proc:
%p select(filter, [$1..10000]); # _Robert Israel_, Mar 31 2019
%t Select[Range[50000],
%t PrimeQ[IntegerReverse[#^2]] &&
%t PrimeOmega[#^2 + IntegerReverse[#^2]] == 2 &]
%Y Cf. A007488, A059007, A306301.
%K nonn,base
%O 1,1
%A _Robert Price_, Mar 31 2019