login
A179279
Composite numbers k such that (Bell(k+1) - Bell(k)) mod k = 1.
0
4, 28, 40, 343, 10744, 18506, 18658, 22360, 34486, 289912, 293710, 565213, 722765, 2469287, 13231942, 86523219
OFFSET
1,1
COMMENTS
The congruence is true for all primes k. Bell(k) is the sequence A000110. Tested up to k=5000.
a(10) > 73000. - Giovanni Resta, Aug 26 2018
a(17) > 10^8. - Hiroaki Yamanouchi, Sep 01 2018
One could compute the Bell numbers mod lcm(1, 2, ..., k) (see A003418) (or even the lcm of the composite numbers up to k) to reduce the number of digits and still find the same terms. - David A. Corneth, Aug 26 2018
EXAMPLE
For k=4, (Bell(5) - Bell(4)) mod 4 = (52 - 15) mod 4 = 37 mod 4 = 1, but 4 is not prime, so 4 is a term.
MATHEMATICA
fQ[n_] := ! PrimeQ@n && Mod[BellB[n + 1] - BellB[n], n] == 1; k = 1; lst = {}; While[k < 9201, If[fQ@k, AppendTo[lst, k]; Print@k]; k++ ]; lst (* Robert G. Wilson v, Jul 28 2010 *)
CROSSREFS
Sequence in context: A032405 A344467 A307046 * A061428 A069518 A151912
KEYWORD
nonn,more
AUTHOR
Jean-Claude Arbaut, Jul 08 2010
EXTENSIONS
a(5)-a(9) from Giovanni Resta, Aug 26 2018
a(10)-a(16) from Hiroaki Yamanouchi, Sep 01 2018
STATUS
approved