login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306913
Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. 1/((1+x)^k+x^k).
4
1, 1, -2, 1, -2, 4, 1, -3, 2, -8, 1, -4, 6, 0, 16, 1, -5, 10, -11, -4, -32, 1, -6, 15, -20, 21, 8, 64, 1, -7, 21, -35, 34, -42, -8, -128, 1, -8, 28, -56, 70, -48, 85, 0, 256, 1, -9, 36, -84, 126, -127, 48, -171, 16, -512, 1, -10, 45, -120, 210, -252, 220, 0, 342, -32, 1024
OFFSET
0,3
LINKS
FORMULA
A(n,k) = (-1)^n * Sum_{j=0..floor(n/k)} (-1)^(((k+1) mod 2) * j) * binomial(n+k-1,k*j+k-1).
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
-2, -2, -3, -4, -5, -6, -7, -8, ...
4, 2, 6, 10, 15, 21, 28, 36, ...
-8, 0, -11, -20, -35, -56, -84, -120, ...
16, -4, 21, 34, 70, 126, 210, 330, ...
-32, 8, -42, -48, -127, -252, -462, -792, ...
64, -8, 85, 48, 220, 461, 924, 1716, ...
-128, 0, -171, 0, -385, -780, -1717, -3432, ...
256, 16, 342, -164, 715, 1209, 3017, 6434, ...
MATHEMATICA
A[n_, k_] := (-1)^n * Sum[(-1)^(Mod[k+1, 2] * j) * Binomial[n + k - 1, k*j + k - 1], {j, 0, Floor[n/k]}]; Table[A[n - k, k], {n, 0, 11}, {k, n, 1, -1}] // Flatten (* Amiram Eldar, May 25 2021 *)
CROSSREFS
Columns 1-2 give A122803, A108520.
Sequence in context: A110162 A350228 A199087 * A087704 A165092 A306915
KEYWORD
sign,tabl
AUTHOR
Seiichi Manyama, Mar 16 2019
STATUS
approved