login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307394
Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. ((1-x)^(k-4))/((1-x)^k+x^k).
5
1, 1, 3, 1, 4, 6, 1, 4, 9, 10, 1, 4, 10, 14, 15, 1, 4, 10, 19, 15, 21, 1, 4, 10, 20, 28, 8, 28, 1, 4, 10, 20, 34, 28, -7, 36, 1, 4, 10, 20, 35, 48, 1, -22, 45, 1, 4, 10, 20, 35, 55, 48, -80, -21, 55, 1, 4, 10, 20, 35, 56, 75, 0, -242, 12, 66, 1, 4, 10, 20, 35, 56, 83, 75, -164, -485, 77, 78
OFFSET
0,3
LINKS
FORMULA
A(n,k) = Sum_{j=0..floor(n/k)} (-1)^j * binomial(n+3,k*j+3).
A(n,2*k) = Sum_{i=0..n} Sum_{j=0..n-i} (-1)^j * binomial(i+1,k*j+1) * binomial(n-i+1,k*j+1).
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
3, 4, 4, 4, 4, 4, 4, 4, 4, ...
6, 9, 10, 10, 10, 10, 10, 10, 10, ...
10, 14, 19, 20, 20, 20, 20, 20, 20, ...
15, 15, 28, 34, 35, 35, 35, 35, 35, ...
21, 8, 28, 48, 55, 56, 56, 56, 56, ...
28, -7, 1, 48, 75, 83, 84, 84, 84, ...
36, -22, -80, 0, 75, 110, 119, 120, 120, ...
45, -21, -242, -164, 0, 110, 154, 164, 165, ...
MATHEMATICA
T[n_, k_] := Sum[(-1)^j * Binomial[n+3, k*j + 3], {j, 0, Floor[n/k]}]; Table[T[n - k, k], {n, 0, 12}, {k, n, 1, -1}] // Flatten (* Amiram Eldar, May 20 2021 *)
CROSSREFS
Columns 1-5 give A000217(n+1), A279230, A307395, A099589(n+3), A289388(n+3).
Sequence in context: A051203 A243553 A286159 * A194540 A351153 A193043
KEYWORD
sign,tabl
AUTHOR
Seiichi Manyama, Apr 07 2019
STATUS
approved