login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307392
Number of partitions of n with at most one part in the interval [i*(i+1)/2, i+(i*(i+1)/2)] for all nonnegative integers i.
0
1, 1, 1, 1, 2, 3, 3, 3, 3, 4, 6, 9, 11, 12, 12, 12, 13, 15, 18, 22, 27, 34, 42, 50, 56, 60, 63, 66, 70, 76, 84, 94, 106, 120, 136, 154, 177, 206, 241, 279, 317, 352, 381, 404, 423, 442, 464, 492, 528, 574, 630, 694, 764, 839, 920, 1008, 1104, 1213, 1341, 1494, 1674, 1878
OFFSET
0,5
COMMENTS
The intervals are: [1,2], [3,5], [6,9], [10,14], [15,20], [21,27], [28,35], [36,44], [45,54], [55,65], ... .
FORMULA
G.f.: Product_{n>=0} (1 + Sum_{k=(n*(n+1)/2)..(n*(n+3)/2)} x^k).
EXAMPLE
a(0)=1 by definition of the empty partition.
a(10)=6 because 10=9+1=8+2=7+3=6+4=6+3+1 (for example, you cannot take 5+5 or 7+2+1 because of the definition of a(n)).
MAPLE
f:= n-> 1+add(x^j, j=n*(n+1)/2..n*(n+3)/2):
a:= n-> coeff(mul(f(k), k=1..ceil((sqrt(9+8*n)-3)/2)), x, n):
seq(a(n), n=0..61);
PROG
(PARI) f(n, x) = (1+sum(j=n*(n+1)/2, n*(n+3)/2, x^j));
a(n) = polcoef(prod(k=1, ceil((sqrt(9+8*n)-3)/2), f(k, x)), n, x); \\ version 2.11.0 or newer; Michel Marcus, Apr 08 2019
(PARI) first(n) = v = Vecrev(Vec(a(n))); vector(n, i, v[i]) \\ using a(n) from above \\ David A. Corneth, Apr 08 2019
CROSSREFS
Sequence in context: A029089 A358468 A173924 * A046886 A257246 A056206
KEYWORD
nonn
AUTHOR
Igor Haladjian, Apr 06 2019
STATUS
approved