Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #55 Apr 19 2019 10:23:07
%S 1,1,1,1,2,3,3,3,3,4,6,9,11,12,12,12,13,15,18,22,27,34,42,50,56,60,63,
%T 66,70,76,84,94,106,120,136,154,177,206,241,279,317,352,381,404,423,
%U 442,464,492,528,574,630,694,764,839,920,1008,1104,1213,1341,1494,1674,1878
%N Number of partitions of n with at most one part in the interval [i*(i+1)/2, i+(i*(i+1)/2)] for all nonnegative integers i.
%C The intervals are: [1,2], [3,5], [6,9], [10,14], [15,20], [21,27], [28,35], [36,44], [45,54], [55,65], ... .
%F G.f.: Product_{n>=0} (1 + Sum_{k=(n*(n+1)/2)..(n*(n+3)/2)} x^k).
%e a(0)=1 by definition of the empty partition.
%e a(10)=6 because 10=9+1=8+2=7+3=6+4=6+3+1 (for example, you cannot take 5+5 or 7+2+1 because of the definition of a(n)).
%p f:= n-> 1+add(x^j, j=n*(n+1)/2..n*(n+3)/2):
%p a:= n-> coeff(mul(f(k), k=1..ceil((sqrt(9+8*n)-3)/2)), x, n):
%p seq(a(n), n=0..61);
%o (PARI) f(n, x) = (1+sum(j=n*(n+1)/2, n*(n+3)/2, x^j));
%o a(n) = polcoef(prod(k=1, ceil((sqrt(9+8*n)-3)/2), f(k, x)), n, x); \\ version 2.11.0 or newer; _Michel Marcus_, Apr 08 2019
%o (PARI) first(n) = v = Vecrev(Vec(a(n))); vector(n, i, v[i]) \\ using a(n) from above \\ _David A. Corneth_, Apr 08 2019
%Y Cf. A000217, A057944.
%K nonn
%O 0,5
%A _Igor Haladjian_, Apr 06 2019