login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A241519
Denominators of b(n) = b(n-1)/2 + 1/(2*n), b(0)=0.
3
1, 2, 2, 12, 3, 15, 60, 840, 105, 630, 630, 13860, 6930, 180180, 360360, 144144, 9009, 306306, 306306, 11639628, 14549535, 14549535, 58198140, 2677114440, 334639305, 3346393050
OFFSET
0,2
COMMENTS
Generally, 2*b(n) = b(n-1) + f(n). See, for f(n)=n, A000337(n)/2^n.
a(0)=1. b(n) is mentioned in A241269.
Difference table of b(n):
0, 1/2, 1/2, 5/12, 1/3, 4/15, ...
1/2, 0, -1/12, -1/12, -1/15, -1/20, ...
-1/2, -1/12, 0, 1/60, 1/60, 11/840, ...
5/12, 1/12, 1/60, 0, -1/280, -1/280, ...
etc.
b(n) is mentioned in A241269 as an autosequence of the first kind.
The denominators of the first two upper diagonals are the positive Apéry numbers, A005430(n+1). Compare to the array in A003506.
Numerators: 0, 1, 1, 5, 1, 4, 13, 151, 16, 83, 73, 1433, 647, 15341, ... .
FORMULA
b(n) = -Re(Phi(2, 1, n + 1)) where Phi denotes the Lerch transcendent. - Eric W. Weisstein, Dec 11 2017
EXAMPLE
0, 1/2, 1/2, 5/12, 1/3, 4/15, 13/60, 151/840, 16/105, 83/630, 73/630, ...
b(1) = (0+1)/2, hence a(1)=2.
b(2) = (1/2+1/2)/2 = 1/2, hence a(2)=2.
b(3) = (1/2+1/3)/2 = 5/12, hence a(3)=12.
MATHEMATICA
b[0] = 0; b[n_] := b[n] = 1/2*(b[n-1] + 1/n); Table[b[n] // Denominator, {n, 0, 25}] (* Jean-François Alcover, Apr 25 2014 *)
Table[-Re[LerchPhi[2, 1, n + 1]], {n, 0, 20}] // Denominator (* Eric W. Weisstein, Dec 11 2017 *)
-Re[LerchPhi[2, 1, Range[20]]] // Denominator (* Eric W. Weisstein, Dec 11 2017 *)
RecurrenceTable[{b[n] == b[n - 1]/2 + 1/(2 n), b[0] == 0}, b[n], {n, 20}] // Denominator (* Eric W. Weisstein, Dec 11 2017 *)
CROSSREFS
Cf. A086466.
Cf. A242376 (numerators).
Sequence in context: A243306 A128269 A109813 * A353767 A288339 A288808
KEYWORD
nonn
AUTHOR
Paul Curtz, Apr 24 2014
EXTENSIONS
Extension, after a(13), from Jean-François Alcover, Apr 24 2014
STATUS
approved