login
A241518
Number of partitions p of n such that #m(1) = #m(2), where #m(i) = number of numbers in p that have multiplicity i.
0
1, 0, 0, 1, 2, 3, 3, 4, 5, 6, 8, 12, 16, 23, 27, 41, 46, 63, 71, 96, 109, 148, 161, 219, 256, 332, 379, 500, 580, 738, 859, 1079, 1250, 1560, 1791, 2220, 2563, 3116, 3595, 4369, 5054, 6080, 7020, 8418, 9729, 11617, 13409, 15911, 18417, 21713, 25078, 29467
OFFSET
0,5
EXAMPLE
a(6) counts these 3 partitions: 411, 222, 111111.
MATHEMATICA
z = 30; u[p_] := Length[DeleteDuplicates[Select[p, Count[p, #] == 1 &]]]; v[p_] := Length[DeleteDuplicates[Select[p, Count[p, #] == 2 &]]]; Table[Count[IntegerPartitions[n], p_ /; u[p] == v[p]], {n, 0, z}]
CROSSREFS
Cf. A241274.
Sequence in context: A205216 A304885 A017853 * A372593 A125616 A367220
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 24 2014
STATUS
approved