login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A017853
Expansion of 1/(1-x^6-x^7-x^8-x^9-x^10-x^11-x^12-x^13).
1
1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 3, 3, 4, 5, 6, 8, 11, 13, 16, 20, 25, 32, 42, 53, 66, 83, 104, 131, 167, 212, 267, 337, 425, 536, 678, 858, 1083, 1367, 1726, 2179, 2753, 3480, 4396, 5551, 7010, 8852, 11180, 14124
OFFSET
0,13
COMMENTS
Number of compositions (ordered partitions) of n into parts 6, 7, 8, 9, 10, 11, 12 and 13. - Ilya Gutkovskiy, May 25 2017
LINKS
FORMULA
a(n) = a(n-6) +a(n-7) +a(n-8) +a(n-9) +a(n-10) +a(n-11) +a(n-12) +a(n-13) for n>12. - Vincenzo Librandi, Jun 28 2013
MATHEMATICA
CoefficientList[Series[1/(1 - Total[(x^Range[6, 13])]), {x, 0, 50}], x] (* Harvey P. Dale, Apr 21 2011 *)
CoefficientList[Series[1 / (1 - x^6 - x^7 - x^8 - x^9 - x^10 - x^11 - x^12 - x^13), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 28 2013 *)
PROG
(Magma) m:=70; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x^6-x^7-x^8-x^9-x^10-x^11-x^12-x^13))); /* or */ I:=[1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2]; [n le 13 select I[n] else Self(n-6)+Self(n-7)+Self(n-8)+Self(n-9)+Self(n-10)+Self(n-11)+Self(n-12)+Self(n-13): n in [1..70]]; // Vincenzo Librandi, Jun 28 2013
CROSSREFS
Sequence in context: A355358 A205216 A304885 * A241518 A372593 A125616
KEYWORD
nonn,easy
AUTHOR
STATUS
approved