login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A017852
Expansion of 1/(1-x^6-x^7-x^8-x^9-x^10-x^11-x^12).
1
1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 9, 11, 14, 18, 23, 30, 37, 46, 57, 71, 89, 113, 142, 179, 225, 282, 353, 443, 555, 697, 876, 1101, 1383, 1737, 2179, 2734, 3431, 4307, 5408, 6792, 8528, 10707
OFFSET
0,13
COMMENTS
Number of compositions of n into parts p where 6 <= p <= 12. [Joerg Arndt, Jun 28 2013]
LINKS
FORMULA
a(n) = a(n-6) +a(n-7) +a(n-8) +a(n-9) +a(n-10) +a(n-11) +a(n-12) for n>11. - Vincenzo Librandi, Jun 28 2013
MATHEMATICA
CoefficientList[Series[1 / (1 - Total[x^Range[6, 12]]), {x, 0, 60}], x] (* Vincenzo Librandi, Jun 28 2013 *)
PROG
(Magma) m:=70; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x^6-x^7-x^8-x^9-x^10-x^11-x^12))); /* or */ I:=[1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]; [n le 12 select I[n] else Self(n-6)+Self(n-7)+Self(n-8)+Self(n-9)+Self(n-10)+Self(n-11)+Self(n-12): n in [1..70]]; // Vincenzo Librandi, Jun 28 2013
CROSSREFS
Sequence in context: A067659 A261772 A153156 * A340751 A319069 A029013
KEYWORD
nonn,easy
AUTHOR
STATUS
approved