login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A017854
Expansion of 1/(1-x^6-x^7-x^8-x^9-x^10-x^11-x^12-x^13-x^14).
1
1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 3, 4, 4, 5, 6, 8, 11, 15, 18, 22, 27, 34, 44, 58, 74, 93, 116, 146, 185, 237, 303, 385, 486, 614, 777, 987, 1256, 1597, 2025, 2565, 3249, 4120, 5230, 6642, 8430, 10692, 13556, 17190
OFFSET
0,13
COMMENTS
Number of compositions of n into parts p where 6 <= p <= 14. [Joerg Arndt, Jun 28 2013]
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,1,1,1,1,1,1,1,1,1).
FORMULA
a(n) = a(n-6) +a(n-7) +a(n-8) +a(n-9) +a(n-10) +a(n-11) +a(n-12) +a(n-13) +a(n-14) for n>13. - Vincenzo Librandi, Jun 28 2013
MATHEMATICA
CoefficientList[Series[1 / (1 - Total[x^Range[6, 14]]), {x, 0, 60}], x] (* Vincenzo Librandi, Jun 28 2013 *)
LinearRecurrence[{0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1}, {1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 3}, 60] (* Harvey P. Dale, Apr 16 2024 *)
PROG
(Magma) I:=[1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 3]; [n le 14 select I[n] else Self(n-6)+Self(n-7)+Self(n-8)+Self(n-9)+Self(n-10)+Self(n-11)+Self(n-12)+Self(n-13)+Self(n-14): n in [1..70]]; /* or */ m:=70; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x^6-x^7-x^8-x^9-x^10-x^11-x^12-x^13-x^14))); // Vincenzo Librandi, Jun 28 2013
CROSSREFS
Sequence in context: A015737 A015745 A375476 * A261171 A330264 A356208
KEYWORD
nonn,easy
AUTHOR
STATUS
approved