login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A153156
Coefficients of the eighth-order mock theta function T_1(q).
8
1, -1, 2, -2, 3, -4, 5, -6, 8, -9, 11, -14, 17, -20, 24, -28, 33, -39, 46, -53, 62, -72, 83, -96, 110, -126, 145, -165, 188, -214, 243, -275, 312, -352, 396, -447, 502, -563, 632, -707, 791, -884, 986, -1098, 1223, -1359, 1509, -1676, 1857, -2056, 2276, -2515
OFFSET
0,3
LINKS
B. Gordon and R. J. McIntosh, Some eighth order mock theta functions, J. London Math. Soc. 62 (2000), 321-335.
FORMULA
G.f.: Sum{n >= 0} q^(n^2+n) (1+q^2)(1+q^4)...(1+q^(2n))/(1+q)(1+q^3)...(1+q^(2n+1)).
a(n) ~ (-1)^n * sqrt(1 + sqrt(2)) * exp(Pi*sqrt(n)/2) / (2^(11/4) * sqrt(n)). - Vaclav Kotesovec, Jun 14 2019
MATHEMATICA
nmax = 100; CoefficientList[Series[Sum[x^(k*(k+1)) * Product[(1 + x^(2*j)), {j, 1, k}] / Product[(1 + x^(2*j+1)), {j, 0, k}], {k, 0, Floor[Sqrt[nmax]]}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 13 2019 *)
PROG
(PARI) lista(nn) = my(q = qq + O(qq^nn)); gf = sum(n = 0, nn, q^(n^2+n) * prod(k = 1, n, 1 + q^(2*k)) / prod(k = 0, n, 1 + q^(2*k+1))); Vec(gf) \\ Michel Marcus, Jun 18 2013
CROSSREFS
Other '8th-order' mock theta functions are at A153148, A153149, A153155, A153172, A153174, A153176, A153178.
Sequence in context: A137793 A067659 A261772 * A017852 A340751 A319069
KEYWORD
sign
AUTHOR
Jeremy Lovejoy, Dec 19 2008
EXTENSIONS
More terms from Michel Marcus, Feb 23 2015
STATUS
approved