login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A153154
Permutation of natural numbers: A059893-conjugate of A006068.
5
0, 1, 3, 2, 7, 4, 5, 6, 15, 8, 9, 14, 11, 12, 13, 10, 31, 16, 17, 30, 19, 28, 29, 18, 23, 24, 25, 22, 27, 20, 21, 26, 63, 32, 33, 62, 35, 60, 61, 34, 39, 56, 57, 38, 59, 36, 37, 58, 47, 48, 49, 46, 51, 44, 45, 50, 55, 40, 41, 54, 43, 52, 53, 42, 127, 64, 65, 126, 67, 124
OFFSET
0,3
COMMENTS
A002487(1+a(n)) = A020651(n) and A002487(a(n)) = A020650(n). So, it generates the enumeration system of positive rationals based on Stern's sequence A002487. - Yosu Yurramendi, Feb 26 2020
FORMULA
From Yosu Yurramendi, Feb 26 2020: (Start)
a(1) = 1, for all n > 0 a(2*n) = 2*a(n) + 1, a(2*n+1) = 2*a(A065190(n)).
a(1) = 1, a(2) = 3, a(3) = 2, for all n > 1 a(2*n) = 2*a(n) + 1, and if n even a(2*n+1) = 2*a(n+1), else a(2*n+1) = 2*a(n-1).
a(n) = A054429(A231551(n)) = A231551(A065190(n)) = A284459(A054429(n)) =
A332769(A284459(n)) = A258996(A154437(n)). (End)
PROG
(R)
maxn <- 63 # by choice
a <- c(1, 3, 2)
#
for(n in 2:maxn){
a[2*n] <- 2*a[n] + 1
if(n%%2==0) a[2*n+1] <- 2*a[n+1]
else a[2*n+1] <- 2*a[n-1]
}
(a <- c(0, a))
# Yosu Yurramendi, Feb 26 2020
(R)
# Given n, compute a(n) by taking into account the binary representation of n
maxblock <- 8 # by choice
a <- c(1, 3, 2)
for(n in 4:2^maxblock){
ones <- which(as.integer(intToBits(n)) == 1)
nbit <- as.integer(intToBits(n))[1:tail(ones, n = 1)]
anbit <- nbit
for(i in 2:(length(anbit) - 1))
anbit[i] <- bitwXor(anbit[i], anbit[i - 1]) # ?bitwXor
anbit[0:(length(anbit) - 1)] <- 1 - anbit[0:(length(anbit) - 1)]
a <- c(a, sum(anbit*2^(0:(length(anbit) - 1))))
}
(a <- c(0, a))
# Yosu Yurramendi, Oct 04 2021
CROSSREFS
Inverse: A153153. a(n) = A059893(A006068(A059893(n))).
Sequence in context: A334998 A153151 A175057 * A154438 A354367 A376182
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Dec 20 2008
STATUS
approved