login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Permutation of natural numbers: A059893-conjugate of A006068.
5

%I #16 Oct 08 2021 23:57:31

%S 0,1,3,2,7,4,5,6,15,8,9,14,11,12,13,10,31,16,17,30,19,28,29,18,23,24,

%T 25,22,27,20,21,26,63,32,33,62,35,60,61,34,39,56,57,38,59,36,37,58,47,

%U 48,49,46,51,44,45,50,55,40,41,54,43,52,53,42,127,64,65,126,67,124

%N Permutation of natural numbers: A059893-conjugate of A006068.

%C A002487(1+a(n)) = A020651(n) and A002487(a(n)) = A020650(n). So, it generates the enumeration system of positive rationals based on Stern's sequence A002487. - _Yosu Yurramendi_, Feb 26 2020

%H A. Karttunen, <a href="/A153154/b153154.txt">Table of n, a(n) for n = 0..2047</a>

%H <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>

%F From _Yosu Yurramendi_, Feb 26 2020: (Start)

%F a(1) = 1, for all n > 0 a(2*n) = 2*a(n) + 1, a(2*n+1) = 2*a(A065190(n)).

%F a(1) = 1, a(2) = 3, a(3) = 2, for all n > 1 a(2*n) = 2*a(n) + 1, and if n even a(2*n+1) = 2*a(n+1), else a(2*n+1) = 2*a(n-1).

%F a(n) = A054429(A231551(n)) = A231551(A065190(n)) = A284459(A054429(n)) =

%F A332769(A284459(n)) = A258996(A154437(n)). (End)

%o (R)

%o maxn <- 63 # by choice

%o a <- c(1,3,2)

%o #

%o for(n in 2:maxn){

%o a[2*n] <- 2*a[n] + 1

%o if(n%%2==0) a[2*n+1] <- 2*a[n+1]

%o else a[2*n+1] <- 2*a[n-1]

%o }

%o (a <- c(0,a))

%o # _Yosu Yurramendi_, Feb 26 2020

%o (R)

%o # Given n, compute a(n) by taking into account the binary representation of n

%o maxblock <- 8 # by choice

%o a <- c(1, 3, 2)

%o for(n in 4:2^maxblock){

%o ones <- which(as.integer(intToBits(n)) == 1)

%o nbit <- as.integer(intToBits(n))[1:tail(ones, n = 1)]

%o anbit <- nbit

%o for(i in 2:(length(anbit) - 1))

%o anbit[i] <- bitwXor(anbit[i], anbit[i - 1]) # ?bitwXor

%o anbit[0:(length(anbit) - 1)] <- 1 - anbit[0:(length(anbit) - 1)]

%o a <- c(a, sum(anbit*2^(0:(length(anbit) - 1))))

%o }

%o (a <- c(0, a))

%o # _Yosu Yurramendi_, Oct 04 2021

%Y Inverse: A153153. a(n) = A059893(A006068(A059893(n))).

%K nonn,base

%O 0,3

%A _Antti Karttunen_, Dec 20 2008