login
A067659
Number of partitions of n into distinct parts such that number of parts is odd.
85
0, 1, 1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 9, 11, 14, 16, 19, 23, 27, 32, 38, 44, 52, 61, 71, 82, 96, 111, 128, 148, 170, 195, 224, 256, 293, 334, 380, 432, 491, 557, 630, 713, 805, 908, 1024, 1152, 1295, 1455, 1632, 1829, 2048, 2291, 2560, 2859, 3189, 3554, 3958, 4404
OFFSET
0,7
COMMENTS
Ramanujan theta functions: phi(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).
LINKS
Joerg Arndt, Matters Computational (The Fxtbook), end of section 16.4.2 "Partitions into distinct parts", pp.348ff
Mircea Merca, Combinatorial interpretations of a recent convolution for the number of divisors of a positive integer, Journal of Number Theory, Volume 160 (March 2016), Pages 60-75, function q_o(n).
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
For g.f. see under A067661.
a(n) = (A000009(n)-A010815(n))/2. - Vladeta Jovovic, Feb 24 2002
Expansion of (1-phi(-q))/(2*chi(-q)) in powers of q where phi(),chi() are Ramanujan theta functions. - Michael Somos, Feb 14 2006
G.f.: sum(n>=1, q^(2*n^2-n) / prod(k=1..2*n-1, 1-q^k ) ). [Joerg Arndt, Apr 01 2014]
a(n) = A067661(n) - A010815(n). - Andrey Zabolotskiy, Apr 12 2017
A000009(n) = a(n) + A067661(n). - Gus Wiseman, Jan 09 2021
EXAMPLE
From Gus Wiseman, Jan 09 2021: (Start)
The a(5) = 1 through a(15) = 14 partitions (A-F = 10..15):
5 6 7 8 9 A B C D E F
321 421 431 432 532 542 543 643 653 654
521 531 541 632 642 652 743 753
621 631 641 651 742 752 762
721 731 732 751 761 843
821 741 832 842 852
831 841 851 861
921 931 932 942
A21 941 951
A31 A32
B21 A41
B31
C21
54321
(End)
MAPLE
b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0,
`if`(n=0, t, add(b(n-i*j, i-1, abs(t-j)), j=0..min(n/i, 1))))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..80); # Alois P. Heinz, Apr 01 2014
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = If[n > i*(i + 1)/2, 0, If[n == 0, t, Sum[b[n - i*j, i - 1, Abs[t - j]], {j, 0, Min[n/i, 1]}]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Jan 16 2015, after Alois P. Heinz *)
CoefficientList[Normal[Series[(QPochhammer[-x, x]-QPochhammer[x])/2, {x, 0, 100}]], x] (* Andrey Zabolotskiy, Apr 12 2017 *)
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&OddQ[Length[#]]&]], {n, 0, 30}] (* Gus Wiseman, Jan 09 2021 *)
PROG
(PARI) {a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( (eta(x^2+A)/eta(x+A) - eta(x+A))/2, n))} /* Michael Somos, Feb 14 2006 */
(PARI) N=66; q='q+O('q^N); S=1+2*sqrtint(N);
gf=sum(n=1, S, (n%2!=0) * q^(n*(n+1)/2) / prod(k=1, n, 1-q^k ) );
concat( [0], Vec(gf) ) /* Joerg Arndt, Oct 20 2012 */
(PARI) N=66; q='q+O('q^N); S=1+sqrtint(N);
gf=sum(n=1, S, q^(2*n^2-n) / prod(k=1, 2*n-1, 1-q^k ) );
concat( [0], Vec(gf) ) \\ Joerg Arndt, Apr 01 2014
CROSSREFS
Dominates A000009.
Numbers with these strict partitions as binary indices are A000069.
The non-strict version is A027193.
The Heinz numbers of these partitions are A030059.
The even version is A067661.
The version for rank is A117193, with non-strict version A101707.
The ordered version is A332304, with non-strict version A166444.
Other cases of odd length:
- A024429 counts set partitions of odd length.
- A089677 counts ordered set partitions of odd length.
- A174726 counts ordered factorizations of odd length.
- A339890 counts factorizations of odd length.
A008289 counts strict partitions by sum and length.
A026804 counts partitions whose least part is odd, with strict case A026832.
Sequence in context: A363221 A332577 A137793 * A261772 A153156 A017852
KEYWORD
easy,nonn
AUTHOR
Naohiro Nomoto, Feb 23 2002
STATUS
approved