login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A332304 Number of compositions (ordered partitions) of n into distinct parts such that number of parts is odd. 14
0, 1, 1, 1, 1, 1, 7, 7, 13, 19, 25, 31, 43, 49, 61, 193, 205, 337, 475, 727, 985, 1363, 1741, 2359, 2983, 3841, 4705, 5929, 12193, 13777, 20527, 27631, 39901, 52651, 75601, 99151, 132907, 172297, 227053, 287569, 373525, 465241, 587563, 725839, 899761, 1457683 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,7

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..5000

Index entries for sequences related to compositions

FORMULA

G.f.: Sum_{k>=1} (2*k - 1)! * x^(k*(2*k - 1)) / Product_{j=1..2*k-1} (1 - x^j).

a(n) = A032020(n) - A332305(n).

EXAMPLE

a(6) = 7 because we have [6], [3, 2, 1], [3, 1, 2], [2, 3, 1], [2, 1, 3], [1, 3, 2] and [1, 2, 3].

MAPLE

b:= proc(n, i, p) option remember; `if`(i*(i+1)/2<n, 0, `if`(n=0,

irem(p, 2)*p!, add(b(n-i*j, i-1, p+j), j=0..min(1, n/i))))

end:

a:= n-> b(n$2, 0):

seq(a(n), n=0..55); # Alois P. Heinz, Feb 09 2020

MATHEMATICA

nmax = 45; CoefficientList[Series[Sum[(2 k - 1)! x^(k (2 k - 1))/Product[1 - x^j, {j, 1, 2 k - 1}], {k, 1, nmax}], {x, 0, nmax}], x]

CROSSREFS

Cf. A027193, A032020, A067659, A166444, A332305.

Sequence in context: A335895 A072821 A038589 * A317790 A109539 A109541

Adjacent sequences: A332301 A332302 A332303 * A332305 A332306 A332307

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Feb 09 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 3 10:55 EST 2023. Contains 360034 sequences. (Running on oeis4.)