login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A072821
Largest prime that can appear in any representation of n as an arithmetic mean of distinct primes.
2
1, 1, 7, 7, 13, 13, 23, 19, 29, 29, 43, 37, 53, 47, 71, 61, 79, 73, 103, 89, 113, 109, 139, 127, 157, 139, 179, 163, 199, 181, 223, 199, 241, 227, 271, 241, 293, 271, 317, 293, 349, 317, 379, 349, 409, 379, 439, 409, 463, 439, 503, 463, 523, 499, 571, 523, 601
OFFSET
2,3
COMMENTS
Thanks to John W. Layman for inspiration.
EXAMPLE
a(6) = 13, as 13 is the largest prime in 6 = (5+7)/2 = (2+3+13)/3 = (2+5+11)/3 = (2+3+5+7+13)/5.
MAPLE
sp:= proc(i) option remember; `if` (i=1, 2, sp(i-1) +ithprime(i)) end:
b:= proc(n, i, t) option remember; local h; if n<0 then 0 elif n=0 then `if` (t=0, 1, 0) elif i=2 then `if` (n=2 and t=1, 2, 0) else `if` (b(n-i, prevprime(i), t-1)>0, i, b(n, prevprime(i), t)) fi end:
a:= proc(n) local s, k; s:= 1; for k from 2 while sp(k)/k<=n do s:= max (s, b(k*n, nextprime (k*n -sp(k-1)-1), k)) od: s end:
seq(a(n), n=2..40); # Alois P. Heinz, Aug 03 2009
MATHEMATICA
sp[i_] := sp[i] = If[i == 1, 2, sp[i - 1] + Prime[i]];
b[n_, i_, t_] := b[n, i, t] = Which[n < 0, 0, n == 0, If[t == 0, 1, 0], i == 2, If[n == 2 && t == 1, 1, 0], True, If[b[n - i, NextPrime[i, -1], t - 1] > 0, i, b[n, NextPrime[i, -1], t]]];
a[n_] := Module[{s, k}, s = 1; For[k = 2, sp[k]/k <= n, k++, s = Max[s, b[k*n, NextPrime[k*n - sp[k - 1] - 1], k]]]; s];
Table[a[n], {n, 2, 60}] (* Jean-François Alcover, Feb 13 2018, after Alois P. Heinz *)
CROSSREFS
Cf. A072701.
Sequence in context: A143429 A168301 A335895 * A038589 A332304 A317790
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Jul 15 2002
EXTENSIONS
More terms from Alois P. Heinz, Aug 03 2009
STATUS
approved