OFFSET
1,3
COMMENTS
Also number of partitions of n in which the largest part occurs an odd number of times. Example: a(5)=6 because we have [5],[4,1],[3,2],[3,1,1],[2,1,1,1] and [1,1,1,1,1] ([2,2,1] does not qualify). - Emeric Deutsch, Apr 04 2006
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Alois P. Heinz)
FORMULA
G.f.: Sum_{k>=1}((-1)^(k+1)*(-1+1/Product_{i>=k} (1-x^i))). a(n) = Sum_{k=1..n}(-1)^(k+1)*A026807(n, k). - Vladeta Jovovic, Aug 26 2003
G.f.: Sum_{j>=1}(x^j/(1+x^j)/Product_{i=1..j}(1-x^i)). - Vladeta Jovovic, Aug 11 2004
G.f.: Sum_{k>=1}(x^(2k-1)/Product_{j>=2k-1}(1-x^j)). - Emeric Deutsch, Apr 04 2006
a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*sqrt(3)*n) * (1 - (sqrt(3/2)/Pi + 25*Pi/(24*sqrt(6))) / sqrt(n) + (25/16 + 2929*Pi^2/6912)/n). - Vaclav Kotesovec, Jul 06 2019, extended Nov 02 2019
EXAMPLE
a(5)=6 because we have [5],[4,1],[3,1,1],[2,2,1],[2,1,1,1] and [1,1,1,1,1] ([3,2] does not qualify).
MAPLE
g:=sum(x^(2*k-1)/product(1-x^j, j=2*k-1..50), k=1..50): gser:=series(g, x=0, 45): seq(coeff(gser, x, n), n=1..43); # Emeric Deutsch, Apr 04 2006
# second Maple program:
b:= proc(n, i) option remember; `if`(n<1 or i<1, 0, b(n, i-1)+
`if`(n=i, irem(n, 2), 0)+`if`(i>n, 0, b(n-i, i)))
end:
a:= n-> b(n$2):
seq(a(n), n=1..60); # Alois P. Heinz, Jul 26 2015
MATHEMATICA
b[n_, i_] := b[n, i] = If[n < 1 || i < 1, 0, b[n, i - 1] + If[n == i, Mod[n, 2], 0] + If[i > n, 0, b[n - i, i]]]; a[n_] := b[n, n]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Oct 09 2015, after Alois P. Heinz *)
PROG
(PARI) b(n, i) = if(n<1 || i<1, 0, b(n, i - 1) + if(n==i, n%2 , 0) + if(i>n, 0, b(n - i, i)));
a(n) = b(n, n); \\ Indranil Ghosh, Jun 22 2017, after Maple code by Alois P. Heinz
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved