login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A240213
Number of partitions p of n such that median(p) <= multiplicity(min(p)).
5
0, 1, 1, 1, 3, 3, 6, 8, 13, 18, 24, 31, 45, 57, 78, 102, 136, 174, 230, 291, 379, 478, 608, 761, 965, 1196, 1497, 1852, 2299, 2822, 3487, 4258, 5222, 6350, 7737, 9370, 11362, 13687, 16512, 19825, 23806, 28460, 34041, 40552, 48312, 57365, 68081, 80578, 95334
OFFSET
0,5
FORMULA
a(n) = A240212(n) + A240213(n) for n >= 0.
a(n) + A240215(n) = A000041(n) for n >= 0.
EXAMPLE
a(6) counts these 13 partitions: 611, 5111, 422, 4211, 41111, 3311, 32111, 311111, 2222, 22211, 221111, 2111111, 11111111.
MATHEMATICA
z = 40; f[n_] := f[n] = IntegerPartitions[n]; t1 = Table[Count[f[n], p_ /; Median[p] < Count[p, Min[p]]], {n, 0, z}] (* A240212 *)
t2 = Table[Count[f[n], p_ /; Median[p] <= Count[p, Min[p]]], {n, 0, z}] (* A240213 *)
t3 = Table[Count[f[n], p_ /; Median[p] == Count[p, Min[p]]], {n, 0, z}] (* A240214 *)
t4 = Table[Count[f[n], p_ /; Median[p] > Count[p, Min[p]]], {n, 0, z}] (* A240215 *)
t5 = Table[Count[f[n], p_ /; Median[p] >= Count[p, Min[p]]], {n, 0, z}] (* A240216 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 04 2014
STATUS
approved