login
A026805
Number of partitions of n in which the least part is even.
20
0, 1, 0, 2, 1, 3, 2, 6, 5, 9, 9, 16, 17, 26, 28, 42, 48, 66, 77, 105, 122, 160, 189, 245, 290, 368, 436, 547, 650, 804, 954, 1174, 1390, 1693, 2004, 2425, 2865, 3445, 4060, 4858, 5716, 6802, 7986, 9468, 11087, 13088, 15298, 17995, 20987, 24604, 28631, 33464
OFFSET
1,4
COMMENTS
Also number of partitions of n in which the largest part occurs an even number of times. Example: a(6)=3 because we have [3,3],[2,2,1,1] and [1,1,1,1,1,1]. - Emeric Deutsch, Apr 04 2006
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Alois P. Heinz)
FORMULA
From Vladeta Jovovic, Aug 26 2003: (Start)
G.f.: Sum_{k>=2} ((-1)^k*(-1+1/Product_{i>=k} (1-x^i))).
a(n) = Sum_{k=2..n} (-1)^k*A026807(n, k) = A000041(n)-A026804(n). (End)
From Emeric Deutsch, Apr 04 2006: (Start)
G.f.: Sum_{k>=1}(x^(2k)/Product_{j>=2k}(1-x^j)).
G.f.: Sum_{k>=1}(x^(2k)/((1-x^(2k))*Product_{j=1..k-1}(1-x^j))). (End)
a(n) ~ Pi * exp(Pi*sqrt(2*n/3)) / (3 * 2^(5/2) * n^(3/2)) * (1 - (3*sqrt(3/2)/Pi + 61*Pi/(24*sqrt(6))) / sqrt(n)). - Vaclav Kotesovec, Jul 06 2019, extended Nov 02 2019
EXAMPLE
a(6)=3 because we have [6],[4,2] and [2,2,2].
MAPLE
g:=sum(x^(2*k)/(1-x^(2*k))/product(1-x^j, j=1..k-1), k=1..40): gser:=series(g, x=0, 52): seq(coeff(gser, x, n), n=1..49); # Emeric Deutsch, Apr 04 2006
# second Maple program:
b:= proc(n, i) option remember; `if`(n<1 or i<1, 0, b(n, i-1)+
`if`(n=i, 1-irem(n, 2), 0)+`if`(i>n, 0, b(n-i, i)))
end:
a:= n-> b(n$2):
seq(a(n), n=1..60); # Alois P. Heinz, Jul 26 2015
MATHEMATICA
b[n_, i_] := b[n, i] = If[n<1 || i<1, 0, b[n, i-1] + If[n==i, 1-Mod[n, 2], 0] + If[i>n, 0, b[n-i, i]]]; a[n_] := b[n, n]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Oct 28 2015, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A337452 A164768 A006208 * A335688 A206494 A022477
KEYWORD
nonn
STATUS
approved