login
A337452
Number of relatively prime strict integer partitions of n with no 1's.
12
0, 0, 0, 0, 0, 1, 0, 2, 1, 3, 2, 6, 3, 9, 7, 11, 11, 20, 15, 28, 24, 35, 36, 55, 47, 73, 71, 95, 96, 136, 123, 180, 177, 226, 235, 305, 299, 403, 406, 503, 523, 668, 662, 852, 873, 1052, 1115, 1370, 1391, 1720, 1784, 2125, 2252, 2701, 2786, 3348, 3520, 4116
OFFSET
0,8
LINKS
Fausto A. C. Cariboni, Table of n, a(n) for n = 0..300
EXAMPLE
The a(5) = 1 through a(16) = 11 partitions (A = 10, B = 11, C = 12, D = 13):
32 43 53 54 73 65 75 76 95 87 97
52 72 532 74 543 85 B3 B4 B5
432 83 732 94 653 D2 D3
92 A3 743 654 754
542 B2 752 753 763
632 643 932 762 853
652 5432 843 943
742 852 952
832 942 B32
A32 6532
6432 7432
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&!MemberQ[#, 1]&&GCD@@#==1&]], {n, 0, 15}]
CROSSREFS
A078374 is the version allowing 1's.
A302698 is the non-strict version.
A332004 is the ordered version allowing 1's.
A337450 is the ordered non-strict version.
A337451 is the ordered version.
A337485 is the pairwise coprime version.
A000837 counts relatively prime partitions.
A078374 counts relatively prime strict partitions.
A002865 counts partitions with no 1's.
A212804 counts compositions with no 1's.
A291166 appears to rank relatively prime compositions.
A337561 counts pairwise coprime strict compositions.
Sequence in context: A098911 A052305 A165045 * A164768 A006208 A026805
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 31 2020
STATUS
approved