login
A078374
Number of partitions of n into distinct and relatively prime parts.
76
1, 0, 1, 1, 2, 2, 4, 4, 6, 7, 11, 10, 17, 17, 23, 26, 37, 36, 53, 53, 70, 77, 103, 103, 139, 147, 184, 199, 255, 260, 339, 358, 435, 474, 578, 611, 759, 810, 963, 1045, 1259, 1331, 1609, 1726, 2015, 2200, 2589, 2762, 3259, 3509, 4058, 4416, 5119, 5488, 6364, 6882
OFFSET
1,5
COMMENTS
The Heinz numbers of these partitions are given by A302796, which is the intersection of A005117 (strict) and A289509 (relatively prime). - Gus Wiseman, Oct 18 2020
LINKS
N. J. A. Sloane, Transforms
FORMULA
Moebius transform of A000009.
G.f.: 1 + Sum_{n>=1} a(n)*x^n/(1 - x^n) = Product_{n>=1} (1 + x^n). - Ilya Gutkovskiy, Apr 26 2017
EXAMPLE
From Gus Wiseman, Oct 18 2020: (Start)
The a(1) = 1 through a(13) = 17 partitions (empty column indicated by dot, A = 10, B = 11, C = 12):
1 . 21 31 32 51 43 53 54 73 65 75 76
41 321 52 71 72 91 74 B1 85
61 431 81 532 83 543 94
421 521 432 541 92 651 A3
531 631 A1 732 B2
621 721 542 741 C1
4321 632 831 643
641 921 652
731 5421 742
821 6321 751
5321 832
841
931
A21
5431
6421
7321
(End)
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&GCD@@#==1&]], {n, 15}] (* Gus Wiseman, Oct 18 2020 *)
CROSSREFS
Cf. A047966.
A000837 is the not necessarily strict version.
A302796 gives the Heinz numbers of these partitions.
A305713 is the pairwise coprime instead of relatively prime version.
A332004 is the ordered version.
A337452 is the case without 1's.
A000009 counts strict partitions.
A000740 counts relatively prime compositions.
Sequence in context: A122134 A035940 A067772 * A366129 A341697 A242984
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Dec 24 2002
STATUS
approved