login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A206494 Number of ways to take apart the rooted tree corresponding to the Matula-Goebel number n by sequentially removing terminal edges. 4
1, 1, 1, 2, 1, 3, 2, 6, 6, 4, 1, 12, 3, 8, 10, 24, 2, 30, 6, 20, 20, 5, 6, 60, 20, 15, 90, 40, 4, 60, 1, 120, 15, 10, 40, 180, 12, 30, 45, 120, 3, 120, 8, 30, 210, 36, 10, 360, 80, 140, 30, 90, 24, 630, 35, 240, 90, 24, 2, 420, 30, 6, 420, 720, 105, 105, 6, 60, 126, 280, 20, 1260 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

The Matula-Goebel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m >= 2 there corresponds the product of the Matula-Goebel numbers of the m branches of T.

Number of ways to label the vertices of the rooted tree corresponding to the Matula-Goebel number n with the elements of {1,2,...,n} so that the label of each vertex is less than that of its descendants. Example: a(8)=6 because the rooted tree with Matula-Goebel number 8 is the star \|/; the root has label 1 and the 3 leaves are labeled with any permutation of {2,3,4}. See the Knuth reference, p. 67, Exercise 20. There is a simple bijection between the ways of the described labeling of a rooted tree and the ways of taking it apart by sequentially removing terminal edges: remove the edges in the inverse order of the labeling.

REFERENCES

D. E. Knuth, The Art of Computer Programming, Vol.3, 2nd edition, Addison-Wesley, Reading, MA, 1998.

LINKS

Table of n, a(n) for n=1..72.

E. Deutsch, Tree statistics from Matula numbers, arXiv:1111.4288 [math.CO], 2011.

J. Fulman, Mixing time for a random walk on rooted trees, The Electronic J. of Combinatorics, 16, 2009, R139.

F. Goebel, On a 1-1-correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.

I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.

I. Gutman and Yeong-Nan Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.

D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Rev. 10 (1968) 273.

B. E. Sagan and Y.-N. Yeh, Probabilistic algorithms for trees, The Fibonacci Quarterly, 27, 1989, 201-208. [Emeric Deutsch, Apr 28 2015]

Index entries for sequences related to Matula-Goebel numbers

FORMULA

a(prime(m)) = a(m); a(r*s) = a(r)*a(s)*binomial(E(r*s),E(r)), where E(k) is the number of edges of the rooted tree with Matula-Goebel number k. The Maple program is based on these recurrence relations.

a(n) = V(n)!/TF(n), where V denotes "number of vertices" (A061775) and TF denotes "tree factorial" (A206493) (see Eq. (3) in the Fulman reference).

EXAMPLE

a(7)=2 because the rooted tree with Matula-Goebel number 7 is Y; denoting the edges in preorder by 1,2,3, it can be taken apart either in the order 231 or 321. a(11) = 1 because the rooted tree with Matula-Goebel number 11 is the path tree with 5 vertices; any path tree can be taken apart in only one way.

MAPLE

with(numtheory): E := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then 0 elif bigomega(n) = 1 then 1+E(pi(n)) else E(r(n))+E(s(n)) end if end proc: a := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then 1 elif bigomega(n) = 1 then a(pi(n)) else a(r(n))*a(s(n))*binomial(E(r(n))+E(s(n)), E(r(n))) end if end proc: seq(a(n), n = 1 .. 72);

CROSSREFS

Cf. A061775, A206493.

Sequence in context: A006208 A026805 A335688 * A022477 A238944 A144238

Adjacent sequences: A206491 A206492 A206493 * A206495 A206496 A206497

KEYWORD

nonn

AUTHOR

Emeric Deutsch, May 10 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 22:05 EST 2022. Contains 358698 sequences. (Running on oeis4.)