login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A206491
Irregular triangle read by rows: T(n,k) is the number of root subtrees with k nodes in the rooted tree having Matula-Goebel number n.
5
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 2, 3, 2, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 3, 4, 3, 1, 1, 1, 2, 2, 1, 1, 2, 3, 3, 1, 1, 2, 3, 3, 2, 1, 1, 4, 6, 4, 1, 1, 1, 1, 2, 1, 1, 3, 5, 5, 3, 1, 1, 1, 3, 3, 1, 1, 3, 4, 4, 3, 1, 1, 2, 4, 4, 3, 1, 1, 2, 2, 2, 2, 1, 1, 1, 2, 3, 2, 1, 1, 4, 7, 7, 4, 1
OFFSET
1,8
COMMENTS
A root subtree of a rooted tree G is a subtree of G containing the root.
The Matula-Goebel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T.
Number of entries in row n = A061775(n).
Sum of entries in row n = A184160(n).
For the number of all subtrees of a given size, see A212620.
REFERENCES
F. Goebel, On a 1-1 correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.
I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.
I. Gutman and Y-N. Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.
D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Review, 10, 1968, 273.
EXAMPLE
Row 7 is 1,1,2,1 because the rooted tree with Matula-Goebel number 7 is Y; its five root subtrees have 1, 2, 3, 3, and 4 nodes.
MAPLE
with(numtheory): V := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then 1 elif bigomega(n) = 1 then 1+V(pi(n)) else V(r(n))+V(s(n))-1 end if end proc: R := proc (n, k) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 and k = 1 then 1 elif n = 1 and 1 < k then 0 elif bigomega(n) = 1 and k = 1 then 1 elif bigomega(n) = 1 then R(pi(n), k-1) else add(R(r(n), j)*R(s(n), k+1-j), j = 1 .. k) end if end proc: for n to 40 do seq(R(n, k), k = 1 .. V(n)) end do; # yields sequence in triangular form
MATHEMATICA
r[n_] := FactorInteger[n][[1, 1]];
s[n_] := n/r[n];
V[n_] := Which[n == 1, 1, PrimeOmega[n] == 1, 1 + V[PrimePi[n]], True, V[r[n]] + V[s[n]] - 1];
R[n_, k_] := Which[n == 1 && k == 1, 1, n == 1 && 1 < k, 0, PrimeOmega[n] == 1 && k == 1, 1, PrimeOmega[n] == 1, R[PrimePi[n], k-1], True, Sum[R[r[n], j]*R[s[n], k+1-j], {j, 1, k}]];
Table[R[n, k], {n, 1, 40}, {k, 1, V[n]}] // Flatten (* Jean-François Alcover, Oct 13 2024, after Emeric Deutsch *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, May 08 2012
STATUS
approved