login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A101707
Number of partitions of n having positive odd rank (the rank of a partition is the largest part minus the number of parts).
22
0, 0, 1, 0, 2, 1, 4, 2, 7, 6, 13, 11, 22, 22, 38, 39, 63, 69, 103, 114, 165, 189, 262, 301, 407, 475, 626, 733, 950, 1119, 1427, 1681, 2118, 2503, 3116, 3678, 4539, 5360, 6559, 7735, 9400, 11076, 13372, 15728, 18886, 22184, 26501, 31067, 36947, 43242, 51210, 59818, 70576, 82291, 96750
OFFSET
0,5
COMMENTS
a(n) + A101708(n) = A064173(n).
REFERENCES
George E. Andrews, The Theory of Partitions, Addison-Wesley, Reading, Mass., 1976.
FORMULA
a(n) = (A000041(n) - A000025(n))/4. - Vladeta Jovovic, Dec 14 2004
G.f.: Sum((-1)^(k+1)*x^((3*k^2+k)/2)/(1+x^k), k=1..infinity)/Product(1-x^k, k=1..infinity). - Vladeta Jovovic, Dec 20 2004
a(n) = A340692(n)/2. - Gus Wiseman, Feb 07 2021
EXAMPLE
a(7)=2 because the only partitions of 7 with positive odd rank are 421 (rank=1) and 52 (rank=3).
From Gus Wiseman, Feb 07 2021: (Start)
Also the number of integer partitions of n into an even number of parts, the greatest of which is odd. For example, the a(2) = 1 through a(10) = 13 partitions (empty column indicated by dot) are:
11 . 31 32 33 52 53 54 55
1111 51 3211 71 72 73
3111 3221 3222 91
111111 3311 3321 3322
5111 5211 3331
311111 321111 5221
11111111 5311
7111
322111
331111
511111
31111111
1111111111
Also the number of integer partitions of n into an odd number of parts, the greatest of which is even. For example, the a(2) = 1 through a(10) = 13 partitions (empty column indicated by dot, A = 10) are:
2 . 4 221 6 421 8 432 A
211 222 22111 422 441 433
411 431 621 442
21111 611 22221 622
22211 42111 631
41111 2211111 811
2111111 22222
42211
43111
61111
2221111
4111111
211111111
(End)
MAPLE
b:= proc(n, i, r) option remember; `if`(n=0, max(0, r),
`if`(i<1, 0, b(n, i-1, r) +b(n-i, min(n-i, i), 1-
`if`(r<0, irem(i, 2), r))))
end:
a:= n-> b(n$2, -1)/2:
seq(a(n), n=0..55); # Alois P. Heinz, Jan 29 2021
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], EvenQ[Length[#]]&&OddQ[Max[#]]&]], {n, 0, 30}] (* Gus Wiseman, Feb 10 2021 *)
b[n_, i_, r_] := b[n, i, r] = If[n == 0, Max[0, r],
If[i < 1, 0, b[n, i - 1, r] + b[n - i, Min[n - i, i], 1 -
If[r < 0, Mod[i, 2], r]]]];
a[n_] := b[n, n, -1]/2;
a /@ Range[0, 55] (* Jean-François Alcover, May 23 2021, after Alois P. Heinz *)
CROSSREFS
Note: A-numbers of ranking sequences are in parentheses below.
The even-rank version is A101708 (A340605).
The even- but not necessarily positive-rank version is A340601 (A340602).
The Heinz numbers of these partitions are (A340604).
Allowing negative odd ranks gives A340692 (A340603).
- Rank -
A047993 counts balanced (rank zero) partitions (A106529).
A064173 counts partitions of positive/negative rank (A340787/A340788).
A064174 counts partitions of nonpositive/nonnegative rank (A324521/A324562).
A101198 counts partitions of rank 1 (A325233).
A257541 gives the rank of the partition with Heinz number n.
- Odd -
A000009 counts partitions into odd parts (A066208).
A026804 counts partitions whose least part is odd.
A027193 counts partitions of odd length/maximum (A026424/A244991).
A058695 counts partitions of odd numbers (A300063).
A339890 counts factorizations of odd length.
A340385 counts partitions of odd length and maximum (A340386).
Sequence in context: A280948 A325345 A079966 * A304587 A364952 A113418
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Dec 12 2004
EXTENSIONS
More terms from Joerg Arndt, Oct 07 2012
a(0)=0 prepended by Alois P. Heinz, Jan 29 2021
STATUS
approved