login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A280948
Expansion of Product_{k>=1} (1 - x^(6*k)) * (1 + x^(12*k-3)) * (1 + x^(12*k-9)) / ((1 - x^(4*k-2)) * (1 - x^(2*k))).
1
1, 0, 2, 1, 4, 2, 7, 4, 12, 8, 20, 14, 32, 24, 50, 39, 76, 62, 114, 96, 168, 145, 244, 216, 350, 316, 496, 456, 696, 650, 968, 916, 1334, 1278, 1824, 1766, 2475, 2420, 3336, 3290, 4468, 4440, 5948, 5952, 7874, 7929, 10368, 10500, 13584, 13828, 17714
OFFSET
0,3
LINKS
Andrew Sills, Towards an Automation of the Circle Method, Gems in Experimental Mathematics in Contemporary Mathematics, 2010, formula S107.
FORMULA
a(n) ~ 2*Pi * BesselI(1, sqrt(8*n+1)*Pi/(3*sqrt(2))) / (3*sqrt(24*n+3)).
a(n) ~ exp(2*Pi*sqrt(n)/3) / (3*2^(3/2)*n^(3/4)) * (1 + (Pi/24 - 9/(16*Pi))/sqrt(n) + (Pi^2/1152 - 135/(512*Pi^2) - 15/128)/n).
MATHEMATICA
nmax=50; CoefficientList[Series[Product[(1-x^(6*k))*(1+x^(12*k-3))*(1+x^(12*k-9))/((1-x^(4*k-2))*(1-x^(2*k))), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
Sequence in context: A252866 A008796 A254594 * A325345 A079966 A101707
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Jan 11 2017
STATUS
approved