OFFSET
0,4
COMMENTS
The Dyson rank of a nonempty partition is its maximum part minus its number of parts. For this sequence, the rank of an empty partition is 0.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..10000
Freeman J. Dyson, A new symmetry of partitions, Journal of Combinatorial Theory 7.1 (1969): 56-61.
FindStat, St000145: The Dyson rank of a partition
FORMULA
G.f.: 1 + Sum_{i, j>0} q^(i*j) * ( (1+(-1)^(i+j))/2 + Sum_{k>0} q^k * q_binomial(k,i-2) * (1+(-1)^(i+j+k))/2 ). - John Tyler Rascoe, Apr 15 2024
a(n) ~ exp(Pi*sqrt(2*n/3)) / (8*n*sqrt(3)). - Vaclav Kotesovec, Apr 17 2024
EXAMPLE
The a(1) = 1 through a(9) = 18 partitions (empty column indicated by dot):
(1) . (3) (22) (5) (42) (7) (44) (9)
(21) (41) (321) (43) (62) (63)
(111) (311) (2211) (61) (332) (81)
(2111) (322) (521) (333)
(11111) (331) (2222) (522)
(511) (4211) (531)
(2221) (32111) (711)
(4111) (221111) (4221)
(31111) (4311)
(211111) (6111)
(1111111) (32211)
(33111)
(51111)
(222111)
(411111)
(3111111)
(21111111)
(111111111)
MAPLE
b:= proc(n, i, r) option remember; `if`(n=0, 1-max(0, r),
`if`(i<1, 0, b(n, i-1, r) +b(n-i, min(n-i, i), 1-
`if`(r<0, irem(i, 2), r))))
end:
a:= n-> b(n$2, -1):
seq(a(n), n=0..55); # Alois P. Heinz, Jan 22 2021
MATHEMATICA
Table[If[n==0, 1, Length[Select[IntegerPartitions[n], EvenQ[Max[#]-Length[#]]&]]], {n, 0, 30}]
(* Second program: *)
b[n_, i_, r_] := b[n, i, r] = If[n == 0, 1 - Max[0, r], If[i < 1, 0, b[n, i - 1, r] + b[n - i, Min[n - i, i], 1 - If[r < 0, Mod[i, 2], r]]]];
a[n_] := b[n, n, -1];
a /@ Range[0, 55] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)
PROG
(PARI)
p_q(k) = {prod(j=1, k, 1-q^j); }
GB_q(N, M)= {if(N>=0 && M>=0, p_q(N+M)/(p_q(M)*p_q(N)), 0 ); }
A_q(N) = {my(q='q+O('q^N), g=1+sum(i=1, N, sum(j=1, N/i, q^(i*j) * ( ((1/2)*(1+(-1)^(i+j))) + sum(k=1, N-(i*j), ((q^k)*GB_q(k, i-2)) * ((1/2)*(1+(-1)^(i+j+k)))))))); Vec(g)}
A_q(50) \\ John Tyler Rascoe, Apr 15 2024
CROSSREFS
Note: Heinz numbers are given in parentheses below.
The Heinz numbers of these partitions are A340602.
- Rank -
A072233 counts partitions by sum and length.
A257541 gives the rank of the partition with Heinz number n.
A340653 counts factorizations of rank 0.
- Even -
A024430 counts set partitions of even length.
A034008 counts compositions of even length.
A052841 counts ordered set partitions of even length.
A339846 counts factorizations of even length.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 21 2021
STATUS
approved