login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027187
Number of partitions of n into an even number of parts.
185
1, 0, 1, 1, 3, 3, 6, 7, 12, 14, 22, 27, 40, 49, 69, 86, 118, 146, 195, 242, 317, 392, 505, 623, 793, 973, 1224, 1498, 1867, 2274, 2811, 3411, 4186, 5059, 6168, 7427, 9005, 10801, 13026, 15572, 18692, 22267, 26613, 31602, 37619, 44533, 52815, 62338, 73680, 86716, 102162, 119918
OFFSET
0,5
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
For n > 0, also the number of partitions of n whose greatest part is even. [Edited by Gus Wiseman, Jan 05 2021]
Number of partitions of n+1 into an odd number of parts, the least being 1.
Also the number of partitions of n such that the number of even parts has the same parity as the number of odd parts; see Comments at A027193. - Clark Kimberling, Feb 01 2014, corrected Jan 06 2021
Suppose that c(0) = 1, that c(1), c(2), ... are indeterminates, that d(0) = 1, and that d(n) = -c(n) - c(n-1)*d(1) - ... - c(0)*d(n-1). When d(n) is expanded as a polynomial in c(1), c(2),..,c(n), the terms are of the form H*c(i_1)*c(i_2)*...*c(i_k). Let P(n) = [c(i_1), c(i_2), ..., c(i_k)], a partition of n. Then H is negative if P has an odd number of parts, and H is positive if P has an even number of parts. That is, d(n) has A027193(n) negative coefficients, A027187(n) positive coefficients, and A000041 terms. The maximal coefficient in d(n), in absolute value, is A102462(n). - Clark Kimberling, Dec 15 2016
REFERENCES
N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; See p. 8, (7.323) and p. 39, Example 7.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..10000 (first 1000 terms from T. D. Noe)
George E. Andrews and David Newman, The Minimal Excludant in Integer Partitions, J. Int. Seq., Vol. 23 (2020), Article 20.2.3.
Arvind Ayyer, Hiranya Kishore Dey, and Digjoy Paul, How large is the character degree sum compared to the character table sum for a finite group?, arXiv:2406.06036 [math.RT], 2024. See p. 13.
Roland Bacher and Pierre De La Harpe, Conjugacy growth series of some infinitely generated groups, International Mathematics Research Notices, 2016, pp.1-53. (hal-01285685v2)
N. J. Fine, Problem 4314, Amer. Math. Monthly, Vol. 57, 1950, 421-423.
Mircea Merca, Combinatorial interpretations of a recent convolution for the number of divisors of a positive integer, Journal of Number Theory, Volume 160, March 2016, Pages 60-75, function p_e(n).
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
a(n) = (A000041(n) + (-1)^n * A000700(n))/2.
a(n) = p(n) - p(n-1) + p(n-4) - p(n-9) + ... where p(n) is the number of unrestricted partitions of n, A000041. [Fine] - David Callan, Mar 14 2004
From Bill Gosper, Jun 25 2005: (Start)
G.f.: A(q) = Sum_{n >= 0} a(n) q^n = 1 + q^2 + q^3 + 3 q^4 + 3 q^5 + 6 q^6 + ...
= Sum_{n >= 0} q^(2n)/(q; q)_{2n}
= ((Product_{k >= 1} 1/(1-q^k) + (Product_{k >= 1} 1/(1+q^k))/2.
Also, let B(q) = Sum_{n >= 0} A027193(n) q^n = q + q^2 + 2 q^3 + 2 q^4 + 4 q^5 + 5 q^6 + ...
Then B(q) = Sum_{n >= 0} q^(2n+1)/(q; q)_{2n+1} = ((Product_{k >= 1} 1/(1-q^k) - (Product_{k >= 1} 1/(1+q^k))/2.
Also we have the following identity involving 2 X 2 matrices:
Product_{k >= 1} [ 1/(1-q^2k) q^k/(1-q^2k / q^k/(1-q^2k) 1/(1-q^2k) ]
= [ A(q) B(q) / B(q) A(q) ]. (End)
a(2*n) = A046682(2*n), a(2*n+1) = A000701(2*n+1); a(n) = A000041(n)-A027193(n). - Reinhard Zumkeller, Apr 22 2006
Expansion of (1 + phi(-q)) / (2 * f(-q)) where phi(), f() are Ramanujan theta functions. - Michael Somos, Aug 19 2006
G.f.: (Sum_{k>=0} (-1)^k * x^(k^2)) / (Product_{k>0} (1 - x^k)). - Michael Somos, Aug 19 2006
a(n) = A338914(n) + A096373(n). - Gus Wiseman, Jan 06 2021
EXAMPLE
G.f. = 1 + x^2 + x^3 + 3*x^4 + 3*x^5 + 6*x^6 + 7*x^7 + 12*x^8 + 14*x^9 + 22*x^10 + ...
From Gus Wiseman, Jan 05 2021: (Start)
The a(2) = 1 through a(8) = 12 partitions into an even number of parts are the following. The Heinz numbers of these partitions are given by A028260.
(11) (21) (22) (32) (33) (43) (44)
(31) (41) (42) (52) (53)
(1111) (2111) (51) (61) (62)
(2211) (2221) (71)
(3111) (3211) (2222)
(111111) (4111) (3221)
(211111) (3311)
(4211)
(5111)
(221111)
(311111)
(11111111)
The a(2) = 1 through a(8) = 12 partitions whose greatest part is even are the following. The Heinz numbers of these partitions are given by A244990.
(2) (21) (4) (41) (6) (43) (8)
(22) (221) (42) (61) (44)
(211) (2111) (222) (421) (62)
(411) (2221) (422)
(2211) (4111) (431)
(21111) (22111) (611)
(211111) (2222)
(4211)
(22211)
(41111)
(221111)
(2111111)
(End)
MATHEMATICA
f[n_] := Length[Select[IntegerPartitions[n], IntegerQ[First[#]/2] &]]; Table[f[n], {n, 1, 30}] (* Clark Kimberling, Mar 13 2012 *)
a[ n_] := SeriesCoefficient[ (1 + EllipticTheta[ 4, 0, x]) / (2 QPochhammer[ x]), {x, 0, n}]; (* Michael Somos, May 06 2015 *)
a[ n_] := If[ n < 0, 0, Length@Select[ IntegerPartitions[n], EvenQ[Length @ #] &]]; (* Michael Somos, May 06 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( sum( k=0, sqrtint(n), (-x)^k^2, A) / eta(x + A), n))}; /* Michael Somos, Aug 19 2006 */
(PARI) q='q+O('q^66); Vec( (1/eta(q)+eta(q)/eta(q^2))/2 ) \\ Joerg Arndt, Mar 23 2014
CROSSREFS
The Heinz numbers of these partitions are A028260.
The odd version is A027193.
The strict case is A067661.
The case of even sum as well as length is A236913 (the even bisection).
Other cases of even length:
- A024430 counts set partitions of even length.
- A034008 counts compositions of even length.
- A052841 counts ordered set partitions of even length.
- A174725 counts ordered factorizations of even length.
- A332305 counts strict compositions of even length
- A339846 counts factorizations of even length.
A000009 counts partitions into odd parts, ranked by A066208.
A026805 counts partitions whose least part is even.
A072233 counts partitions by sum and length.
A101708 counts partitions of even positive rank.
Sequence in context: A325834 A365924 A241832 * A056508 A050065 A367394
KEYWORD
nonn
EXTENSIONS
Offset changed to 0 by Michael Somos, Jul 24 2012
STATUS
approved