login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325834
Number of integer partitions of n whose number of submultisets is less than or equal to n.
10
0, 0, 1, 1, 3, 3, 6, 7, 12, 14, 21, 21, 37, 43, 51, 56, 90, 98, 130, 143, 180, 200, 230, 249, 403, 454, 508, 555, 657, 706, 826, 889, 1295, 1406, 1568, 1690, 2194, 2396, 2603, 2841, 3387, 3672, 4024, 4344, 4693, 5079, 5489, 5840, 9731, 10424, 11336, 12093
OFFSET
0,5
COMMENTS
The number of submultisets of a partition is the product of its multiplicities, each plus one.
The Heinz numbers of these partitions are given by A325798.
LINKS
FORMULA
a(n) = A000041(n) - A325831(n).
For n even, A325833(n) = a(n) - A325830(n/2); for n odd, A325833(n) = a(n).
EXAMPLE
The a(2) = 1 through a(9) = 14 partitions:
(2) (3) (4) (5) (6) (7) (8) (9)
(22) (32) (33) (43) (44) (54)
(31) (41) (42) (52) (53) (63)
(51) (61) (62) (72)
(222) (322) (71) (81)
(411) (331) (332) (333)
(511) (422) (432)
(431) (441)
(521) (522)
(611) (531)
(2222) (621)
(5111) (711)
(3222)
(6111)
MAPLE
b:= proc(n, i, p) option remember; `if`(n=0 or i=1,
`if`(n=p-1, 1, 0), add(`if`(irem(p, j+1, 'r')=0,
(w-> b(w, min(w, i-1), r))(n-i*j), 0), j=0..n/i))
end:
a:= n-> add(b(n$2, k), k=0..n):
seq(a(n), n=0..55); # Alois P. Heinz, Aug 17 2019
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], Times@@(1+Length/@Split[#])<=n&]], {n, 0, 30}]
(* Second program: *)
b[n_, i_, p_] := b[n, i, p] = If[n == 0 || i == 1, If[n == p - 1, 1, 0], Sum[If[Mod[p, j + 1] == 0, Function[w, b[w, Min[w, i - 1], Quotient[p, j + 1]]][n - i*j], 0], {j, 0, n/i}]];
a[n_] := Sum[b[n, n, k], {k, 0, n}];
a /@ Range[0, 55] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 29 2019
STATUS
approved