login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A325828 Number of integer partitions of n having exactly n + 1 submultisets. 12
1, 1, 1, 2, 1, 3, 1, 4, 2, 3, 1, 12, 1, 3, 4, 21, 1, 14, 1, 18, 4, 3, 1, 116, 3, 3, 12, 25, 1, 40, 1, 271, 4, 3, 4, 325, 1, 3, 4, 295, 1, 56, 1, 36, 47, 3, 1, 3128, 4, 32, 4, 44, 1, 407, 4, 566, 4, 3, 1, 1598, 1, 3, 65, 10656, 5, 90, 1, 54, 4, 84, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

The Heinz numbers of these partitions are given by A325792.

The number of submultisets of an integer partition is the product of its multiplicities, each plus one.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..1000

EXAMPLE

The 12 = 11 + 1 submultisets of the partition (4331) are: (), (1), (3), (4), (31), (33), (41), (43), (331), (431), (433), (4331), so (4331) is counted under a(11).

The a(5) = 3 through a(11) = 12 partitions:

  221    111111  421      3311      22221      1111111111  4322

  311            2221     11111111  51111                  4331

  11111          4111               111111111              4421

                 1111111                                   5411

                                                           6221

                                                           6311

                                                           7211

                                                           33311

                                                           44111

                                                           222221

                                                           611111

                                                           11111111111

MAPLE

b:= proc(n, i, p) option remember; `if`(n=0 or i=1,

      `if`(n=p-1, 1, 0), add(`if`(irem(p, j+1, 'r')=0,

      (w-> b(w, min(w, i-1), r))(n-i*j), 0), j=0..n/i))

    end:

a:= n-> b(n$2, n+1):

seq(a(n), n=0..80);  # Alois P. Heinz, Aug 17 2019

MATHEMATICA

Table[Length[Select[IntegerPartitions[n], Times@@(1+Length/@Split[#])-1==n&]], {n, 0, 30}]

(* Second program: *)

b[n_, i_, p_] := b[n, i, p] = If[n == 0 || i == 1, If[n == p - 1, 1, 0], Sum[If[Mod[p, j + 1] == 0, r = Quotient[p, j + 1]; Function[w, b[w, Min[w, i - 1], r]][n - i*j], 0], {j, 0, n/i}]];

a[n_] := b[n, n, n+1];

a /@ Range[0, 80] (* Jean-Fran├žois Alcover, May 11 2021, after Alois P. Heinz *)

CROSSREFS

Cf. A002033, A098859, A126796, A188431, A325694, A325792, A325793, A325830, A325831, A325832, A325833, A325834, A325836.

Sequence in context: A173801 A108466 A211110 * A200780 A338899 A194943

Adjacent sequences:  A325825 A325826 A325827 * A325829 A325830 A325831

KEYWORD

nonn

AUTHOR

Gus Wiseman, May 25 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 29 17:41 EDT 2021. Contains 346346 sequences. (Running on oeis4.)