login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325825
Square array giving the monic polynomial q satisfying q = gcd(P(x),P(y)) where P(x) and P(y) are polynomials in ring GF(3)[X] with coefficients in {0,1,2} given by the ternary expansions of x and y. The polynomial q is converted back to a ternary number, and then expressed in decimal.
6
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 4, 5, 3, 5, 4, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 3, 4, 1, 3, 1, 1, 3, 1, 4, 3, 1, 1
OFFSET
1,13
COMMENTS
Array is symmetric, and is read by antidiagonals, with (x,y) = (1,1), (1,2), (2,1), (1,3), (2,2), (3,1), ...
If there is a polynomial q that satisfies q = gcd(P(x),P(y)), then also polynomial -q (which is obtained by changing all nonzero coefficients of q as 1 <--> 2, see A004488) satisfies the same relation, because there are two units (+1 and -1) in polynomial ring GF(3)[X]. Here we always choose the polynomial that is monic (i.e., with a leading coefficient +1), thus its base-3 encoding has "1" as its most significant digit, and the terms given here are all included in A132141.
EXAMPLE
The array begins as:
y
x 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ...
--+-----------------------------------------------------
1 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
2 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
3 | 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, ...
4 | 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 4, 4, ...
5 | 1, 1, 1, 1, 5, 1, 5, 1, 1, 1, 5, 1, ...
6 | 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, ...
7 | 1, 1, 1, 1, 5, 1, 5, 1, 1, 1, 5, 1, ...
8 | 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 4, 4, ...
9 | 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, ...
10 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 1, ...
11 | 1, 1, 1, 4, 5, 1, 5, 4, 1, 1, 11, 4, ...
12 | 1, 1, 3, 4, 1, 3, 1, 4, 3, 1, 4, 12, ...
PROG
(PARI)
up_to = 105;
A004488(n) = subst(Pol(apply(x->(3-x)%3, digits(n, 3)), 'x), 'x, 3);
A325825sq(a, b) = { my(a=fromdigits(Vec(lift(gcd(Pol(digits(a, 3))*Mod(1, 3), Pol(digits(b, 3))*Mod(1, 3)))), 3), b=A004488(a)); min(a, b); };
A325825list(up_to) = { my(v = vector(up_to), i=0); for(a=1, oo, for(col=1, a, i++; if(i > up_to, return(v)); v[i] = A325825sq(col, (a-(col-1))))); (v); };
v325825 = A325825list(up_to);
A325825(n) = v325825[n];
CROSSREFS
Central diagonal: A330740 (after its initial zero).
Sequence in context: A327537 A120263 A250208 * A030580 A030579 A030578
KEYWORD
nonn,tabl
AUTHOR
Antti Karttunen, May 22 2019
STATUS
approved