login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Square array giving the monic polynomial q satisfying q = gcd(P(x),P(y)) where P(x) and P(y) are polynomials in ring GF(3)[X] with coefficients in {0,1,2} given by the ternary expansions of x and y. The polynomial q is converted back to a ternary number, and then expressed in decimal.
6

%I #41 Jan 13 2020 20:39:14

%S 1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,1,4,1,1,1,1,1,3,1,1,3,

%T 1,1,1,1,1,1,5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,4,5,3,5,4,3,1,1,1,1,

%U 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,5,1,1,1,1,1,1,1,1,3,4,1,3,1,1,3,1,4,3,1,1

%N Square array giving the monic polynomial q satisfying q = gcd(P(x),P(y)) where P(x) and P(y) are polynomials in ring GF(3)[X] with coefficients in {0,1,2} given by the ternary expansions of x and y. The polynomial q is converted back to a ternary number, and then expressed in decimal.

%C Array is symmetric, and is read by antidiagonals, with (x,y) = (1,1), (1,2), (2,1), (1,3), (2,2), (3,1), ...

%C If there is a polynomial q that satisfies q = gcd(P(x),P(y)), then also polynomial -q (which is obtained by changing all nonzero coefficients of q as 1 <--> 2, see A004488) satisfies the same relation, because there are two units (+1 and -1) in polynomial ring GF(3)[X]. Here we always choose the polynomial that is monic (i.e., with a leading coefficient +1), thus its base-3 encoding has "1" as its most significant digit, and the terms given here are all included in A132141.

%e The array begins as:

%e y

%e x 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ...

%e --+-----------------------------------------------------

%e 1 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...

%e 2 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...

%e 3 | 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, ...

%e 4 | 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 4, 4, ...

%e 5 | 1, 1, 1, 1, 5, 1, 5, 1, 1, 1, 5, 1, ...

%e 6 | 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, ...

%e 7 | 1, 1, 1, 1, 5, 1, 5, 1, 1, 1, 5, 1, ...

%e 8 | 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 4, 4, ...

%e 9 | 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, ...

%e 10 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 1, ...

%e 11 | 1, 1, 1, 4, 5, 1, 5, 4, 1, 1, 11, 4, ...

%e 12 | 1, 1, 3, 4, 1, 3, 1, 4, 3, 1, 4, 12, ...

%o (PARI)

%o up_to = 105;

%o A004488(n) = subst(Pol(apply(x->(3-x)%3, digits(n, 3)), 'x), 'x, 3);

%o A325825sq(a,b) = { my(a=fromdigits(Vec(lift(gcd(Pol(digits(a,3))*Mod(1, 3),Pol(digits(b,3))*Mod(1, 3)))),3), b=A004488(a)); min(a,b); };

%o A325825list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A325825sq(col,(a-(col-1))))); (v); };

%o v325825 = A325825list(up_to);

%o A325825(n) = v325825[n];

%Y Cf. A004488, A091255, A132141, A325820, A325821, A325827.

%Y Central diagonal: A330740 (after its initial zero).

%K nonn,tabl

%O 1,13

%A _Antti Karttunen_, May 22 2019