login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A120263
Ratio of the numerator of n*HarmonicNumber[n] to the numerator of HarmonicNumber[n]: A096617(n)/A001008(n).
1
1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 25, 1, 1, 1, 1
OFFSET
1,6
COMMENTS
a(n) is not equal to 1 when n belongs to A074791 - numbers n such that n does not divide the denominator of the n-th harmonic number.
a(n) is almost always equal to 1 except for n=6,18,20,21,33,42,54,.. when a(n) seems to be equal to a prime divisor of n.
a(n) could be equal to a squared prime divisor of n as for n=100,294,500,847,..
LINKS
FORMULA
a(n) = A096617(n)/A001008(n) = numerator[n*Sum[1/i,{i,1,n}]] / numerator[Sum[1/i,{i,1,n}]].
a(n) = n / gcd(denominator(H(n)),n), where H(n) = sum(1/k, k=1..n). [Gary Detlefs, Sep 05 2011]
a(n) = A096617(n)*A110566(n)/A025529(n). [Arkadiusz Wesolowski, Mar 29 2012]
MATHEMATICA
Numerator[Table[n*Sum[1/i, {i, 1, n}], {n, 1, 500}]]/Numerator[Table[Sum[1/i, {i, 1, n}], {n, 1, 500}]]
PROG
(PARI) {h(n) = sum(k=1, n, 1/k)};
for(n=1, 100, print1(numerator(n*h(n))/numerator(h(n)), ", ")) \\ G. C. Greubel, Sep 01 2018
(Magma) [Numerator(n*HarmonicNumber(n))/Numerator(HarmonicNumber(n)): n in [1..100]]; // G. C. Greubel, Sep 01 2018
CROSSREFS
KEYWORD
frac,nonn
AUTHOR
Alexander Adamchuk, Jun 26 2006
STATUS
approved