login
A110566
a(n) = lcm{1,2,...,n}/denominator of harmonic number H(n).
24
1, 1, 1, 1, 1, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 15, 45, 45, 45, 15, 3, 3, 1, 1, 1, 1, 1, 1, 11, 11, 11, 11, 11, 11, 11, 11, 11, 77, 77, 7, 7, 7, 7, 7, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 9, 9, 9, 27, 27, 27, 9, 9, 9, 3, 3, 3, 3, 3, 33, 33, 33, 33, 11, 11, 11, 11, 11, 11, 11, 1, 1, 1
OFFSET
1,6
COMMENTS
a(n) is always odd.
Unsorted union: 1, 3, 15, 45, 11, 77, 7, 9, 27, 33, 25, 5, 55, 275, 13, 39, 17, 49, 931, 19, 319, 75, ..., . See A112810.
It is conjectured that every odd number occurs in this sequence (see A112822 for the first occurrence of each of them). - Jianing Song, Nov 28 2022
LINKS
FORMULA
a(n) = A003418(n)/A002805(n) = A025529(n)/A001008(n).
From Franz Vrabec, Sep 21 2005: (Start)
a(n) = gcd(lcm{1,2,...,n}, H(n)*lcm{1,2,...,n}).
a(n) = gcd(A003418(n), A025529(n)). (End)
EXAMPLE
a(6) = 60/20 = 3 because lcm{1,2,3,4,5,6}=60 and H(6)=49/20.
MAPLE
H:= proc(n) H(n):= 1/n +`if`(n=1, 0, H(n-1)) end:
L:= proc(n) L(n):= ilcm(n, `if`(n=1, 1, L(n-1))) end:
a:= n-> L(n)/denom(H(n)):
seq(a(n), n=1..100); # Alois P. Heinz, Aug 30 2012
MATHEMATICA
f[n_] := LCM @@ Range[n]/Denominator[HarmonicNumber[n]]; Table[ f[n], {n, 90}] (* Robert G. Wilson v, Sep 15 2005 *)
PROG
(PARI) a(n) = lcm(vector(n, k, k))/denominator(sum(k=1, n, 1/k)); \\ Michel Marcus, Mar 07 2018
(Python)
from sympy import lcm, harmonic
def A110566(n): return lcm([k for k in range(1, n+1)])//harmonic(n).q # Chai Wah Wu, Mar 06 2021
KEYWORD
nonn
AUTHOR
Franz Vrabec, Sep 12 2005
EXTENSIONS
More terms from Robert G. Wilson v, Sep 15 2005
STATUS
approved