OFFSET
0,12
REFERENCES
Advanced Number Theory, Harvey Cohn, Dover Books, 1963, Page 47ff.
LINKS
G. C. Greubel, Rows n = 0..50 of the triangle, flattened
FORMULA
T(n, k) = p(n)/(p(k)*p(n-k)), where p(n) = Product_{j=1..n} A001607(j) and p(0) = 1.
T(n, n-k) = T(n, k).
EXAMPLE
Triangle begins as:
1;
1, 1;
1, -1, 1;
1, -1, -1, 1;
1, 3, 3, 3, 1;
1, -1, 3, 3, -1, 1;
1, -5, -5, 15, -5, -5, 1;
1, 7, 35, 35, 35, 35, 7, 1;
1, 3, -21, -105, 35, -105, -21, 3, 1;
1, -17, 51, -357, 595, 595, -357, 51, -17, 1;
1, 11, 187, -561, -1309, -6545, -1309, -561, 187, 11, 1;
MATHEMATICA
PROG
(Magma)
A001607:=[n le 2 select n-1 else -Self(n-1)-2*Self(n-2): n in [1..100]];
p:= func< n | n eq 0 select 1 else (&*[A001607[j+1]: j in [1..n]]) >;
A177693:= func< n, k | p(n)/(p(k)*p(n-k)) >;
[A177693(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 08 2024
(SageMath)
A001607=BinaryRecurrenceSequence(-1, -2, 0, 1)
def p(n): return product(A001607(j) for j in range(1, n+1))
def A177693(n, k): return p(n)/(p(k)*p(n-k))
flatten([[A177693(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Apr 08 2024
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Roger L. Bagula, May 11 2010
EXTENSIONS
Edited by G. C. Greubel, Apr 08 2024
STATUS
approved