login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177696
Symmetrical triangle read by rows: T(n, k) = m*(T(n-1, k-1) + T(n-1, k)), where T(n, 1) = T(n, n) = n, and m = 2.
1
1, 2, 2, 3, 8, 3, 4, 22, 22, 4, 5, 52, 88, 52, 5, 6, 114, 280, 280, 114, 6, 7, 240, 788, 1120, 788, 240, 7, 8, 494, 2056, 3816, 3816, 2056, 494, 8, 9, 1004, 5100, 11744, 15264, 11744, 5100, 1004, 9, 10, 2026, 12208, 33688, 54016, 54016, 33688, 12208, 2026, 10
OFFSET
1,2
FORMULA
T(n, k) = m*(T(n-1, k-1) + T(n-1, k)), where T(n, 1) = T(n, n) = n, and m = 2.
From G. C. Greubel, Oct 02 2024: (Start)
Sum_{k=1..n} T(n, k) = (1/9)*(7*4^n + 6*n + 2).
Sum_{k=1..n} (-1)^(k-1)*T(n, k) = (1-(-1)^n)*(2-n) - [n=1]. (End)
EXAMPLE
Triangle begins as:
1;
2, 2;
3, 8, 3;
4, 22, 22, 4;
5, 52, 88, 52, 5;
6, 114, 280, 280, 114, 6;
7, 240, 788, 1120, 788, 240, 7;
8, 494, 2056, 3816, 3816, 2056, 494, 8;
9, 1004, 5100, 11744, 15264, 11744, 5100, 1004, 9;
10, 2026, 12208, 33688, 54016, 54016, 33688, 12208, 2026, 10;
MATHEMATICA
m = 2; T[n_, k_]:= T[n, k]= If[k==1 || k==n, n, m*(T[n-1, k-1] + T[n-1, k])]; Table[T[n, k], {n, 10}, {k, n}]//Flatten
PROG
(Magma)
function T(n, k) // T = A177696
if k lt 1 or k gt n then return 0;
elif k eq 1 or k eq n then return n;
else return 2*(T(n-1, k-1) + T(n-1, k));
end if;
end function;
[T(n, k): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 02 2024
(SageMath)
@CachedFunction
def T(n, k): # T = A177696
if (k<0 or k>n): return 0
elif (k==1 or k==n): return n
else: return 2*(T(n-1, k-1) + T(n-1, k))
flatten([[T(n, k) for k in range(1, n+1)] for n in range(1, 13)]) # G. C. Greubel, Oct 02 2024
CROSSREFS
Cf. A051597 (m=1).
Sequence in context: A145596 A186753 A135835 * A134574 A141617 A267644
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, May 11 2010
EXTENSIONS
Edited by G. C. Greubel, Oct 02 2024
STATUS
approved