login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A186753
T(n, k) = Sum_{i=0, n} (Sum_{j=0, k} C(i+j,i) * C(n-i+j,n-i) * C(i+k-j,k-j) * C(n-i+k-j,n-i)).
0
1, 2, 2, 3, 8, 3, 4, 20, 20, 4, 5, 40, 76, 40, 5, 6, 70, 216, 216, 70, 6, 7, 112, 511, 832, 511, 112, 7, 8, 168, 1064, 2568, 2568, 1064, 168, 8, 9, 240, 2016, 6768, 10036, 6768, 2016, 240, 9, 10, 330, 3552, 15840, 32680, 32680, 15840, 3552, 330, 10, 11, 440
OFFSET
0,2
COMMENTS
Second row or column is A007290.
LINKS
L. Carlitz, Some Binomial Coefficient Identities, Fibonacci Quart. 4 (1966), 323-331
M. E. Cohen and H. S. Sun, Some extensions of the Brock-Carlitz identity, Proc. Amer. Math. Soc. 76 (1979), 178-185
M. E. Cohen and H. S. Sun, Further generalizations of the Brock-Carlitz identity, Journal of Mathematical Analysis and Applications, Volume 82, Issue 2, August 1981, Pages 346-360
FORMULA
T(n,k) = T(k, n).
T(n,k) - T(n-1, k) - T(n, k-1) = C(n+k,k)^2 : Carlitz-Brock identity (cf links).
EXAMPLE
Table starts:
0: 1, 2, 3, 4, 5,
1: 2, 8, 20, 40, 70,
2: 3, 20, 76, 216, 511,
3: 4, 40, 216, 832, 2568,
4: 5, 70, 511, 2568, 10036
PROG
(PARI) h(m, n) = sum(i=0, m, sum(j=0, n, binomial(i+j, i)*binomial(m-i+j, m-i)*binomial(i+n-j, n-j)*binomial(m-i+n-j, m-i)))
CROSSREFS
Sequence in context: A141611 A234357 A145596 * A135835 A177696 A134574
KEYWORD
nonn,tabl
AUTHOR
Michel Marcus, Dec 19 2012
STATUS
approved