login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A186755
Number of permutations of {1,2,...,n} having no increasing cycles. A cycle (b(1), b(2), ...) is said to be increasing if, when written with its smallest element in the first position, it satisfies b(1)<b(2)<b(3)<... .
11
1, 0, 0, 1, 5, 23, 129, 894, 7202, 65085, 651263, 7161713, 85922825, 1116946192, 15637356864, 234562319757, 3753007054781, 63801128569995, 1148420035784849, 21819978138955622, 436399552962252082, 9164390639379582121, 201616594791853840063
OFFSET
0,5
COMMENTS
a(n) = A186754(n,0).
LINKS
FORMULA
E.g.f.: exp(1-exp(z))/(1-z).
a(n) ~ n! * exp(1-exp(1)) = 0.179374... * n!. - Vaclav Kotesovec, Mar 17 2014
EXAMPLE
a(4)=5 because we have (1432), (1342), (1423), (1243), and (1324).
a(5)=23 counts all cyclic permutations of {1,2,3,4,5}, except (12345).
MAPLE
g := exp(1-exp(z))/(1-z): gser := series(g, z = 0, 25): seq(factorial(n)*coeff(gser, z, n), n = 0 .. 22);
# second Maple program:
a:= proc(n) option remember; `if`(n=0, 1, add(
a(n-j)*binomial(n-1, j-1)*((j-1)!-1), j=1..n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Apr 13 2017
MATHEMATICA
With[{nn=30}, CoefficientList[Series[Exp[1-Exp[x]]/(1-x), {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, May 23 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Feb 26 2011
STATUS
approved