login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A186757
Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} having k increasing cycles of length >=2 (0<=k<= n/2). A cycle (b(1), b(2), ...) is said to be increasing if, when written with its smallest element in the first position, it satisfies b(1) < b(2) < b(3) < ... .
7
1, 1, 1, 1, 2, 4, 10, 11, 3, 59, 36, 25, 363, 212, 130, 15, 2491, 1688, 651, 210, 19661, 14317, 4487, 1750, 105, 176536, 129076, 42435, 12628, 2205, 1767540, 1277159, 451626, 104755, 26775, 945, 19460671, 13974236, 5068723, 1120570, 264880, 27720
OFFSET
0,5
COMMENTS
Row n contains 1 + floor(n/2) entries.
Sum of entries in row n is n!.
T(n,0) = A186758(n).
Sum_{k>=0} k*T(n,k) = A056542(n).
LINKS
FORMULA
E.g.f.: G(t,z) = exp((t-1)(exp(z)-1-z))/(1-z).
The 4-variate e.g.f. H(u,v,w,z) of the permutations of {1,2,...,n} with respect to size (marked by z), number of fixed points (marked by u), number of increasing cycles of length >=2 (marked by v), and number of nonincreasing cycles (marked by w) is given by H(u,v,w,z)=exp(uz+v(exp(z)-1-z)+w(1-exp(z))/(1-z)^w. Remark: the nonincreasing cycles are necessarily of length >=3. We have: G(t,z)=H(1,t,1,z).
EXAMPLE
T(3,0)=2 because we have (1)(2)(3) and (132).
T(4,2)=3 because we have (13)(24), (12)(34), and (14)(23).
Triangle starts:
1;
1;
1, 1;
2, 4;
10, 11, 3;
59, 36, 25;
363, 212, 130, 15;
MAPLE
b:= proc(n) option remember; expand(
`if`(n=0, 1, add(b(n-i)*binomial(n-1, i-1)*
`if`(i>1, (x+(i-1)!-1), 1), i=1..n)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n)):
seq(T(n), n=0..12); # Alois P. Heinz, Mar 19 2017
MATHEMATICA
b[n_] := b[n] = Expand[If[n == 0, 1, Sum[b[n-i]*Binomial[n-1, i-1]*If[i > 1, (x + (i - 1)! - 1), 1], {i, 1, n}]]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][ b[n]];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, May 03 2017, after Alois P. Heinz *)
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Feb 26 2011
STATUS
approved