OFFSET
0,8
LINKS
Alois P. Heinz, Rows n = 0..140, flattened
FORMULA
E.g.f.: G(t,z)=exp((1-t)(exp(z)-1-z))/(1-z)^t.
The 4-variate e.g.f. H(u,v,w,z) of the permutations of {1,2,...,n} with respect to size (marked by z), number of fixed points (marked by u), number of increasing cycles of length >=2 (marked by v), and number of nonincreasing cycles (marked by w) is given by H(u,v,w,z)=exp(uz+v(exp(z)-1-z)+w(1-exp(z))/(1-z)^w. Remark: the nonincreasing cycles are necessarily of length >=3. We have: G(t,z)=H(t,1,t,z).
EXAMPLE
T(3,1)=4 because we have (1)(23), (12)(3), (13)(2), and (132).
T(4,4)=1 because we have (1)(2)(3)(4).
Triangle starts:
1;
0, 1;
1, 0, 1;
1, 4, 0, 1;
4, 9, 10, 0, 1;
11, 53, 35, 20, 0, 1;
MAPLE
G := exp((1-t)*(exp(z)-1-z))/(1-z)^t: Gser := simplify(series(G, z = 0, 13)): for n from 0 to 10 do P[n] := sort(expand(factorial(n)*coeff(Gser, z, n))) end do: for n from 0 to 10 do seq(coeff(P[n], t, j), j = 0 .. n) end do; # yields sequence in triangular form
# second Maple program:
b:= proc(n) option remember; expand(
`if`(n=0, 1, add(b(n-i)*binomial(n-1, i-1)*
`if`(i=1, x, 1+x*((i-1)!-1)), i=1..n)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n)):
seq(T(n), n=0..10); # Alois P. Heinz, Sep 25 2016
MATHEMATICA
b[n_] := b[n] = Expand[If[n == 0, 1, Sum[b[n-i]*Binomial[n-1, i-1]*If[i == 1, x, 1+x*((i-1)!-1)], {i, 1, n}]]]; T[n_] := Function[p, Table[ Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n]]; Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Nov 28 2016 after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Feb 26 2011
STATUS
approved