|
|
A186760
|
|
Number of cycles that are either nonincreasing or of length 1 in all permutations of {1,2,...,n}. A cycle (b(1), b(2), ...) is said to be increasing if, when written with its smallest element in the first position, it satisfies b(1)<b(2)<b(3)<... .
|
|
7
|
|
|
0, 1, 2, 7, 33, 188, 1247, 9448, 80623, 765926, 8022139, 91872328, 1142384735, 15330003154, 220847064955, 3399884265524, 55705822616383, 967921774366510, 17778279366693179, 344189681672898400, 7005438733866799999, 149547115419379439978, 3341127481398057119515
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
a(n) = Sum(A186759(n,k), k=0..n).
|
|
LINKS
|
Alois P. Heinz, Table of n, a(n) for n = 0..300
|
|
FORMULA
|
E.g.f.: (1+z-exp(z)-log(1-z))/(1-z).
a(n) ~ n! * (log(n) + gamma + 2 - exp(1)), where gamma is the Euler-Mascheroni constant (A001620). - Vaclav Kotesovec, Oct 08 2013
|
|
EXAMPLE
|
a(3) = 7 because in (1)(2)(3), (1)(23), (12)(3), (13)(2), (123), and (132) we have a total of 3 + 1 + 1 + 1 + 0 + 1 = 7 cycles that are either of length 1 or nonincreasing.
|
|
MAPLE
|
g := (1+z-exp(z)-ln(1-z))/(1-z): gser := series(g, z = 0, 25): seq(factorial(n)*coeff(gser, z, n), n = 0 .. 22);
|
|
MATHEMATICA
|
CoefficientList[Series[(1+x-E^x-Log[1-x])/(1-x), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 08 2013 *)
|
|
CROSSREFS
|
Cf. A186754, A186755, A186756, A186757, A186758, A186759.
Sequence in context: A302285 A249636 A172387 * A162661 A299043 A104981
Adjacent sequences: A186757 A186758 A186759 * A186761 A186762 A186763
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Emeric Deutsch, Feb 26 2011
|
|
STATUS
|
approved
|
|
|
|