The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A162661 G.f. satisfies: A(x) = 1 + x*A(x) * A( x*A(x)^2 ). 0
 1, 1, 2, 7, 33, 189, 1249, 9237, 74972, 659042, 6215154, 62435805, 664459091, 7458334388, 87979090059, 1087309348481, 14041705640439, 189050930463638, 2648140182064473, 38521885088392896, 580970615943277573 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS FORMULA Let A(x)^m = Sum_{n>=0} a(n,m)*x^n with a(0,m)=1, then a(n,m) = Sum_{k=0..n} m*C(2n-k+m,k)/(2n-k+m) * a(n-k,k). ... Also, if log(A(x)) = Sum_{n>=0} L(n)*x^n/n, then L(n) = n*Sum_{k=1..n} C(2n-k,k)/(2n-k) * a(n-k,k). ... EXAMPLE G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 33*x^4 + 189*x^5 +... A(x)^2 = 1 + 2*x + 5*x^2 + 18*x^3 + 84*x^4 + 472*x^5 +... A(x*A(x)^2) = 1 + x + 4*x^2 + 20*x^3 + 121*x^4 + 838*x^5 +... log(A(x)) = x + 3/2*x^2 + 16/3*x^3 + 103/4*x^4 + 756/5*x^5 +... PROG (PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+x*A*subst(A, x, x*A^2+O(x^n))); polcoeff(A, n)} (PARI) {a(n, m=1)=if(n==0, 1, if(m==0, 0^n, sum(k=0, n, m*binomial(2*n-k+m, k)/(2*n-k+m)*a(n-k, k))))} (PARI) /* log(A(x)) = Sum_{n>=0} L(n)*x^n/n where: */ {L(n)=if(n<1, 0, n*sum(k=1, n, binomial(2*n-k, k)/(2*n-k)*a(n-k, k)))} CROSSREFS Sequence in context: A249636 A172387 A186760 * A299043 A104981 A058797 Adjacent sequences:  A162658 A162659 A162660 * A162662 A162663 A162664 KEYWORD nonn AUTHOR Paul D. Hanna, Jul 09 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 16 08:07 EDT 2021. Contains 343940 sequences. (Running on oeis4.)