login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A162662
Sequence of alternating increasing odd and increasing even numbers such that the sum of any two terms of opposite parity is a prime number.
1
1, 2, 3, 4, 9, 10, 27, 70, 57, 100, 267, 1060, 1227, 27790, 1479, 146380, 3459, 2508040, 49527, 35506900, 470079
OFFSET
1,2
COMMENTS
a(n+1) is taken to be the smallest number, greater than a(n-2), of opposite parity to a(n) that satisfies the condition.
A000034: Period 2: repeat [1, 2] is another sequence satisfying the definition without the increasing constraint. - Michel Marcus, Dec 22 2014
EXAMPLE
1060 + 267 = 1327 is prime;
1060 + 27 = 1087 is prime;
1060 + 9 = 1069 is prime;
1060 + 3 = 1063 is prime;
1060 + 1 = 1061 is prime.
MAPLE
with(numtheory):nn:=30:T:=array(1..nn): T[1]:=1:a:=1:for k from 2 to nn do:id:=0:for
n from k to 1000000 while(id=0) do:n1:=irem(n, 2):i:=0:for p from 1 to a do:
if n=T[p] then i:=0:else fi: x:=n+T[p]:if type(x, prime)=true then i:=i+1:else
fi:od: if i=ceil(a/2) then T[k]:=n:print(n):a:=a+1:id:=1:else fi:od:od:
PROG
(PARI) ok(k, m, v) = {if (k % 2, js = 2, js = 1); forstep(j=js, m, 2, if (! isprime(k + v[j]), return (0)); ); return (1); }
findval(n, v) = {if (n <=2, k = n, k = v[n-2]+2); while (!ok (k, n-1, v), k+= 2); k; }
lista(nn) = {a = vector(nn); a[1] = 1; print1(a[1], ", "); for (n=2, nn, a[n] = findval(n, a); print1(a[n], ", "); ); } \\ Michel Marcus, Dec 22 2014
CROSSREFS
Sequence in context: A329573 A291163 A180743 * A376656 A068334 A283874
KEYWORD
nonn,more
AUTHOR
Michel Lagneau, Jan 27 2011
EXTENSIONS
a(18)-a(21) from Michel Marcus, Dec 22 2014
Name clarified by Michel Marcus, Dec 22 2014
STATUS
approved