login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A180743
Ascending sequence of numbers such that the sum of any two distinct elements (even + odd) is a prime number.
1
1, 2, 3, 4, 9, 10, 27, 57, 69, 70, 267, 429, 1059, 1227, 1479, 2547, 2787, 3249, 3459, 3537, 4089, 4719, 5097, 6267, 6357, 6567, 6957, 8997, 9039, 10089, 12039, 12819, 13719, 16689, 16977, 17289, 17919, 18909, 19377, 19419, 19749
OFFSET
1,2
EXAMPLE
70 + 69 = 139 is prime ;
70 + 57 = 127 is prime ;
70 + 9 = 79 is prime ;
70 + 3 = 73 is prime ;
70 + 1 = 71 is prime.
MAPLE
with(numtheory):nn:=50: T:=array(1..nn): T[1]:=1:T[2]:=2:a:=2:a0:=1:a1:=1:for
k from 3 to nn do:id:=0:for n from k to 20000 while(id=0) do:n1:=irem(n, 2):i:=0:for
p from 1 to a do: if n=T[p] then i:=0:else fi: x:=n+T[p]:if type(x, prime)=true
then i:=i+1:else fi:od: if (i=a1 and n1=0) or (i=a0 and n1=1) then T[k]:=n:a0:=a0+irem(n1+1, 2):a1:=a1+n1:printf(`%d, `, n):a:=a+1:id:=1: else fi:od:od:
CROSSREFS
Sequence in context: A366913 A329573 A291163 * A162662 A376656 A068334
KEYWORD
nonn
AUTHOR
Michel Lagneau, Jan 22 2011
STATUS
approved